Driver Sleepiness Detection Using Deep Learning Convolution Neural Network Classifier

Author(s):  
N. Muthukumaran ◽  
N.Ruban Guru Prasath ◽  
R. Kabilan
Author(s):  
BalaAnand Muthu ◽  
Sivaparthipan CB ◽  
Priyan Malarvizhi Kumar ◽  
Seifedine Nimer Kadry ◽  
Ching-Hsien Hsu ◽  
...  

Author(s):  
Nirmal Yadav

Applying machine learning in life sciences, especially diagnostics, has become a key area of focus for researchers. Combining machine learning with traditional algorithms provides a unique opportunity of providing better solutions for the patients. In this paper, we present study results of applying the Ridgelet Transform method on retina images to enhance the blood vessels, then using machine learning algorithms to identify cases of Diabetic Retinopathy (DR). The Ridgelet transform provides better results for line singularity of image function and, thus, helps to reduce artefacts along the edges of the image. The Ridgelet Transform method, when compared with earlier known methods of image enhancement, such as Wavelet Transform and Contourlet Transform, provided satisfactory results. The transformed image using the Ridgelet Transform method with pre-processing quantifies the amount of information in the dataset. It efficiently enhances the generation of features vectors in the convolution neural network (CNN). In this study, a sample of fundus photographs was processed, which was obtained from a publicly available dataset. In pre-processing, first, CLAHE was applied, followed by filtering and application of Ridgelet transform on the patches to improve the quality of the image. Then, this processed image was used for statistical feature detection and classified by deep learning method to detect DR images from the dataset. The successful classification ratio was 98.61%. This result concludes that the transformed image of fundus using the Ridgelet Transform enables better detection by leveraging a transform-based algorithm and the deep learning.


2021 ◽  
Author(s):  
Neeraj Kumar Rathore ◽  
Varshali Jaiswal ◽  
Varsha Sharma ◽  
Sunita Varma

Abstract Deep-Convolution Neural Network (CNN) is the branch of computer science. Deep Learning CNN is a methodology that teaches computer systems to do what comes naturally to humans. It is a method that learns by example and experience. This is a heuristic-based method to solve computationally exhaustive problems that are not resolved in a polynomial computation time like NP-Hard problems. The purpose of this research is to develop a hybrid methodology for the detection and segmentation of flower images that utilize the extension of the deep CNN. The plant, leaf, and flower image detection are the most challenging issues due to a wide variety of classes, based on their amount of texture, color distinctiveness, shape distinctiveness, and different size. The proposed methodology is implemented in Matlab with deep learning Tool Box and the dataset of flower image is taken from Kaggle with five different classes like daisy, dandelion, rose, tulip, and sunflower. This methodology takes an input of different flower images from data sets, then converts it from RGB (Red, Green, Blue) color model to the L*a*b color model. L*a*b has reduced the effort of image segmentation. The flower image segmentation has been performed by the canny edge detection algorithm which provided better results. The implemented extended deep learning convolution neural network can accurately recognize varieties of flower images. The learning accuracy of the proposed hybrid method is up to 98% that is maximizing up to + 1.89% from state of the art.


Sign in / Sign up

Export Citation Format

Share Document