Retinal blood vessels detection for diabetic retinopathy with Ridgelet transform and convolution neural network

Author(s):  
Nirmal Yadav

Applying machine learning in life sciences, especially diagnostics, has become a key area of focus for researchers. Combining machine learning with traditional algorithms provides a unique opportunity of providing better solutions for the patients. In this paper, we present study results of applying the Ridgelet Transform method on retina images to enhance the blood vessels, then using machine learning algorithms to identify cases of Diabetic Retinopathy (DR). The Ridgelet transform provides better results for line singularity of image function and, thus, helps to reduce artefacts along the edges of the image. The Ridgelet Transform method, when compared with earlier known methods of image enhancement, such as Wavelet Transform and Contourlet Transform, provided satisfactory results. The transformed image using the Ridgelet Transform method with pre-processing quantifies the amount of information in the dataset. It efficiently enhances the generation of features vectors in the convolution neural network (CNN). In this study, a sample of fundus photographs was processed, which was obtained from a publicly available dataset. In pre-processing, first, CLAHE was applied, followed by filtering and application of Ridgelet transform on the patches to improve the quality of the image. Then, this processed image was used for statistical feature detection and classified by deep learning method to detect DR images from the dataset. The successful classification ratio was 98.61%. This result concludes that the transformed image of fundus using the Ridgelet Transform enables better detection by leveraging a transform-based algorithm and the deep learning.

2021 ◽  
Vol 5 (1) ◽  
pp. 21-30
Author(s):  
Rachmat Rasyid ◽  
Abdul Ibrahim

One of the wealth of the Indonesian nation is the many types of ornamental plants. Ornamental plants, for example, the Aglaonema flower, which is much favored by hobbyists of ornamental plants, from homemakers, is a problem to distinguish between types of aglaonema ornamental plants with other ornamental plants. So the authors try to research with the latest technology using a deep learning convolutional neural network method. It is for calcifying aglaonema interest. This research is based on having fascinating leaves and colors. With the study results using the CNN method, the products of aglaonema flowers of Adelia, Legacy, Widuri, RedKochin, Tiara with moderate accuracy value are 56%. In contrast, the aglaonema type Sumatra, RedRuby, has the most accuracy a high of 61%.


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2302
Author(s):  
Kaiyuan Jiang ◽  
Xvan Qin ◽  
Jiawei Zhang ◽  
Aili Wang

In the noncooperation communication scenario, digital signal modulation recognition will help people to identify the communication targets and have better management over them. To solve problems such as high complexity, low accuracy and cumbersome manual extraction of features by traditional machine learning algorithms, a kind of communication signal modulation recognition model based on convolution neural network (CNN) is proposed. In this paper, a convolution neural network combines bidirectional long short-term memory (BiLSTM) with a symmetrical structure to successively extract the frequency domain features and timing features of signals and then assigns importance weights based on the attention mechanism to complete the recognition task. Seven typical digital modulation schemes including 2ASK, 4ASK, 4FSK, BPSK, QPSK, 8PSK and 64QAM are used in the simulation test, and the results show that, compared with the classical machine learning algorithm, the proposed algorithm has higher recognition accuracy at low SNR, which confirmed that the proposed modulation recognition method is effective in noncooperation communication systems.


2021 ◽  

<p>Water being a precious commodity for every person around the world needs to be quality monitored continuously for ensuring safety whilst usage. The water data collected from sensors in water plants are used for water quality assessment. The anomaly present in the water data seriously affects the performance of water quality assessment. Hence it needs to be addressed. In this regard, water data collected from sensors have been subjected to various anomaly detection approaches guided by Machine Learning (ML) and Deep Learning framework. Standard machine learning algorithms have been used extensively in water quality analysis and these algorithms in general converge quickly. Considering the fact that manual feature selection has to be done for ML algorithms, Deep Learning (DL) algorithm is proposed which involve implicit feature learning. A hybrid model is formulated that takes advantage of both and presented it is data invariant too. This novel Hybrid Convolutional Neural Network (CNN) and Extreme Learning Machine (ELM) approach is used to detect presence of anomalies in sensor collected water data. The experiment of the proposed CNN-ELM model is carried out using the publicly available dataset GECCO 2019. The findings proved that the model has improved the water quality assessment of the sensor water data collected by detecting the anomalies efficiently and achieves F1 score of 0.92. This model can be implemented in water quality assessment.</p>


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1576 ◽  
Author(s):  
Li Zhu ◽  
Lianghao Huang ◽  
Linyu Fan ◽  
Jinsong Huang ◽  
Faming Huang ◽  
...  

Landslide susceptibility prediction (LSP) modeling is an important and challenging problem. Landslide features are generally uncorrelated or nonlinearly correlated, resulting in limited LSP performance when leveraging conventional machine learning models. In this study, a deep-learning-based model using the long short-term memory (LSTM) recurrent neural network and conditional random field (CRF) in cascade-parallel form was proposed for making LSPs based on remote sensing (RS) images and a geographic information system (GIS). The RS images are the main data sources of landslide-related environmental factors, and a GIS is used to analyze, store, and display spatial big data. The cascade-parallel LSTM-CRF consists of frequency ratio values of environmental factors in the input layers, cascade-parallel LSTM for feature extraction in the hidden layers, and cascade-parallel full connection for classification and CRF for landslide/non-landslide state modeling in the output layers. The cascade-parallel form of LSTM can extract features from different layers and merge them into concrete features. The CRF is used to calculate the energy relationship between two grid points, and the extracted features are further smoothed and optimized. As a case study, the cascade-parallel LSTM-CRF was applied to Shicheng County of Jiangxi Province in China. A total of 2709 landslide grid cells were recorded and 2709 non-landslide grid cells were randomly selected from the study area. The results show that, compared with existing main traditional machine learning algorithms, such as multilayer perception, logistic regression, and decision tree, the proposed cascade-parallel LSTM-CRF had a higher landslide prediction rate (positive predictive rate: 72.44%, negative predictive rate: 80%, total predictive rate: 75.67%). In conclusion, the proposed cascade-parallel LSTM-CRF is a novel data-driven deep learning model that overcomes the limitations of traditional machine learning algorithms and achieves promising results for making LSPs.


2020 ◽  
Vol 12 (11) ◽  
pp. 1838 ◽  
Author(s):  
Zhao Zhang ◽  
Paulo Flores ◽  
C. Igathinathane ◽  
Dayakar L. Naik ◽  
Ravi Kiran ◽  
...  

The current mainstream approach of using manual measurements and visual inspections for crop lodging detection is inefficient, time-consuming, and subjective. An innovative method for wheat lodging detection that can overcome or alleviate these shortcomings would be welcomed. This study proposed a systematic approach for wheat lodging detection in research plots (372 experimental plots), which consisted of using unmanned aerial systems (UAS) for aerial imagery acquisition, manual field evaluation, and machine learning algorithms to detect the occurrence or not of lodging. UAS imagery was collected on three different dates (23 and 30 July 2019, and 8 August 2019) after lodging occurred. Traditional machine learning and deep learning were evaluated and compared in this study in terms of classification accuracy and standard deviation. For traditional machine learning, five types of features (i.e. gray level co-occurrence matrix, local binary pattern, Gabor, intensity, and Hu-moment) were extracted and fed into three traditional machine learning algorithms (i.e., random forest (RF), neural network, and support vector machine) for detecting lodged plots. For the datasets on each imagery collection date, the accuracies of the three algorithms were not significantly different from each other. For any of the three algorithms, accuracies on the first and last date datasets had the lowest and highest values, respectively. Incorporating standard deviation as a measurement of performance robustness, RF was determined as the most satisfactory. Regarding deep learning, three different convolutional neural networks (simple convolutional neural network, VGG-16, and GoogLeNet) were tested. For any of the single date datasets, GoogLeNet consistently had superior performance over the other two methods. Further comparisons between RF and GoogLeNet demonstrated that the detection accuracies of the two methods were not significantly different from each other (p > 0.05); hence, the choice of any of the two would not affect the final detection accuracies. However, considering the fact that the average accuracy of GoogLeNet (93%) was larger than RF (91%), it was recommended to use GoogLeNet for wheat lodging detection. This research demonstrated that UAS RGB imagery, coupled with the GoogLeNet machine learning algorithm, can be a novel, reliable, objective, simple, low-cost, and effective (accuracy > 90%) tool for wheat lodging detection.


2019 ◽  
Vol 8 (2) ◽  
pp. 5073-5081

Prediction of student performance is the significant part in processing the educational data. Machine learning algorithms are leading the role in this process. Deep learning is one of the important concepts of machine learning algorithm. In this paper, we applied the deep learning technique for prediction of the academic excellence of the students using R Programming. Keras and Tensorflow libraries utilized for making the model using neural network on the Kaggle dataset. The data is separated into testing data training data set. Plot the neural network model using neuralnet method and created the Deep Learning model using two hidden layers using ReLu activation function and one output layer using softmax activation function. After fine tuning process until the stable changes; this model produced accuracy as 85%.


Large data clustering and classification is a very challenging task in data mining. Various machine learning and deep learning systems have been proposed by many researchers on a different dataset. Data volume, data size and structure of data may affect the time complexity of the system. This paper described a new document object classification approach using deep learning (DL) and proposed a recurrent neural network (RNN) for classification with a micro-clustering approach.TF-IDF and a density-based approach are used to store the best features. The plane work used supervised learning method and it extracts features set called as BK of the desired classes. once the training part completed then proceeds to figure out the particular test instances with the help of the planned classification algorithm. Recurrent Neural Network categorized the particular test object according to their weights. The system can able to work on heterogeneous data set and generate the micro-clusters according to classified results. The system also carried out experimental analysis with classical machine learning algorithms. The proposed algorithm shows higher accuracy than the existing density-based approach on different data sets.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Abdelouahid Derhab ◽  
Arwa Aldweesh ◽  
Ahmed Z. Emam ◽  
Farrukh Aslam Khan

In the era of the Internet of Things (IoT), connected objects produce an enormous amount of data traffic that feed big data analytics, which could be used in discovering unseen patterns and identifying anomalous traffic. In this paper, we identify five key design principles that should be considered when developing a deep learning-based intrusion detection system (IDS) for the IoT. Based on these principles, we design and implement Temporal Convolution Neural Network (TCNN), a deep learning framework for intrusion detection systems in IoT, which combines Convolution Neural Network (CNN) with causal convolution. TCNN is combined with Synthetic Minority Oversampling Technique-Nominal Continuous (SMOTE-NC) to handle unbalanced dataset. It is also combined with efficient feature engineering techniques, which consist of feature space reduction and feature transformation. TCNN is evaluated on Bot-IoT dataset and compared with two common machine learning algorithms, i.e., Logistic Regression (LR) and Random Forest (RF), and two deep learning techniques, i.e., LSTM and CNN. Experimental results show that TCNN achieves a good trade-off between effectiveness and efficiency. It outperforms the state-of-the-art deep learning IDSs that are tested on Bot-IoT dataset and records an accuracy of 99.9986% for multiclass traffic detection, and shows a very close performance to CNN with respect to the training time.


Sign in / Sign up

Export Citation Format

Share Document