An Eddy Current Based Non-contact Displacement Sensor

Author(s):  
A. S. Anil Kumar ◽  
Boby George ◽  
Subhas Chandra Mukhopadhyay
2008 ◽  
Vol 128 (4) ◽  
pp. 289-297 ◽  
Author(s):  
Tsutomu Mizuno ◽  
Shigemi Enoki ◽  
Takashi Asahina ◽  
Takayuki Suzuki ◽  
Hiroyuki Maeda ◽  
...  

2019 ◽  
Vol 19 (21) ◽  
pp. 9680-9687 ◽  
Author(s):  
Yating Yu ◽  
Hanchao Li ◽  
Ke Xue ◽  
Dahuan Liu ◽  
Geng Gao

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2842 ◽  
Author(s):  
Wei Liu ◽  
Bing Liang ◽  
Zhenyuan Jia ◽  
Di Feng ◽  
Xintong Jiang ◽  
...  

High precision position control is essential in the process of parts manufacturing and assembling, where eddy current displacement sensors (ECDSs) are widely used owing to the advantages of non-contact sensing, compact volume, and resistance to harsh conditions. To solve the nonlinear characteristics of the sensors, a high-accuracy calibration method based on linearity adjustment is proposed for ECDSs in this paper, which markedly improves the calibration accuracy and then the measurement accuracy. After matching the displacement value and the output voltage of the sensors, firstly, the sensitivity is adjusted according to the specified output range. Then, the weighted support vector adjustment models with the optimal weight of the zero-scale, mid-scale and full-scale are established respectively to cyclically adjust the linearity of the output characteristic curve. Finally, the final linearity adjustment model is obtained, and both the calibration accuracy and precision are verified by the established calibration system. Experimental results show that the linearity of the output characteristic curve of ECDS adjusted by the calibration method reaches over 99.9%, increasing by 1.9–5.0% more than the one of the original. In addition, the measurement accuracy improves from 11–25 μ m to 1–10 μ m in the range of 6mm, which provides a reliable guarantee for high accuracy displacement measurement.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 367 ◽  
Author(s):  
Yue Fan ◽  
Wenli Ma ◽  
Ping Jiang ◽  
Jinlong Huang ◽  
Kewei Chen ◽  
...  

Scanning mirrors appear to be key components in optoelectronic systems for line-of-sight (LOS) stabilization. For improving the angular accuracy of a scanning mirror based on the eddy current displacement sensor measurement, an angular error-correction method is proposed and demonstrated. A mathematic angular error model with physical parameters was developed, and the cross-validation method was employed to determine the reasonable order of the Maclaurin series used in the error model, which increased the exactitude and robustness of the correction method. The error parameters were identified by accurately fitting the calibrated angular errors with the error model, which showed excellent error prediction performance. Based on the angular calculation model corrected by the error model, the closed-loop control system was established to obtain accurate deflection angles. Experimental results show that within the deflection angle of ±1.5 deg, the angular accuracy was improved from 0.28 deg to less than 1.1 arcsec, and the standard deviation for six measurements was less than 1.2 arcsec, which indicates that the angle correction method was effective in improving the linearity of the eddy current sensors and reducing the influence of manufacturing and installation errors.


2010 ◽  
Vol 37-38 ◽  
pp. 773-782
Author(s):  
Hao Huang ◽  
Xiang Yang Lei ◽  
Qiao Xu ◽  
Yin Biao Guo ◽  
Wei Luo

Grinding is a processing method that involves duplicating shape accuracy, so the shape accuracy of the grinding wheel plays a crucial role in machining accuracy. However, this accuracy is difficult to obtain. This paper describes an on-machine wheel profile measuring method that uses a non-contact displacement sensor to obtain the shape accuracy of an arc grinding wheel in a 3-axis aspheric surface grinding machine. This method involves data processing with object radius confined filtering, as well as evaluation using the methods of fitting residual error, measurement uncertainty, and machining result simulation. To verify the feasibility of this measuring method, experiments were performed using two diamond grinding wheels (FEPA D91 with grit size 75-90 μm, and FEPA D15 with grit size 10-25 μm). The experimental results indicate that the method is accurate enough to give the arc grinding wheel profile measurement, while the measuring uncertainty is of the same order of magnitude as the grit size (that is, tens of μm). Moreover, the simulation of the grinding effect with wheel profile measurement data can derive the relationship between the wheel profile error and the machining form error, and can be used to instruct the truing time determination for precision grinding.


Sign in / Sign up

Export Citation Format

Share Document