Simple approximations of the DC biasing field on the core loss of power ferrites and their use in design of magnetic components

Author(s):  
W.K. Mo ◽  
D.K.W. Cheng ◽  
G.S. Lee
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6498
Author(s):  
Fabio Corti ◽  
Alberto Reatti ◽  
Gabriele Maria Lozito ◽  
Ermanno Cardelli ◽  
Antonino Laudani

In this paper, the problem of estimating the core losses for inductive components is addressed. A novel methodology is applied to estimate the core losses of an inductor in a DC-DC converter in the time-domain. The methodology addresses both the non-linearity and dynamic behavior of the core magnetic material and the non-uniformity of the field distribution for the device geometry. The methodology is natively implemented using the LTSpice simulation environment and can be used to include an accurate behavioral model of the magnetic devices in a more complex lumped circuit. The methodology is compared against classic estimation techniques such as Steinmetz Equation and the improved Generalized Steinmetz Equation. The validation is performed on a practical DC-DC Buck converter, which was utilized to experimentally verify the results derived by a model suitable to estimate the inductor losses. Both simulation and experimental test confirm the accuracy of the proposed methodology. Thus, the proposed technique can be flexibly used both for direct core loss estimation and the realization of a subsystem able to simulate the realistic behavior of an inductor within a more complex lumped circuit.


1989 ◽  
Vol 11 (2-4) ◽  
pp. 159-170 ◽  
Author(s):  
M. Shiozaki ◽  
Y. Kurosaki

The anisotropy of magnetic properties in non-oriented electrical steel sheets can be evaluated by measuring Epstein specimens in the radial directions. The magnetic properties measured on ring cores are practically equal to the approximate values of magnetic properties determined by Epstein specimens in the radial directions. Non-oriented electrical steel sheets with anisotropy are not desirable for motors but are suitable for transformers and fluorescent lamp ballasts. The core loss and magnetic induction as measured with ring specimens are better with non-oriented electrical steel sheets with anisotropy than with non-oriented electrical steel sheets with random crystallographic orientation. This phenomenon depends on the texture change of the product.


2019 ◽  
Vol 55 (1) ◽  
pp. 39-46
Author(s):  
W. Kong ◽  
D.G. Cang

The submerged entry nozzle (SEN) clogging has been happening during continuous casting (or CC for short) for nonoriented silicon steel. To solve the problem, the paper studied a flow rate through SEN, a node attached to one of them, and the impact on the clogging. The results showed that when SEN is clogged seriously, the casting speed has to decrease below the target casting speed and that SEN clogging can be predicted by comparing the actual value and the theoretical one of a casting speed. Al2O3 and its composite inclusions caused the SEN clogging and the addition of Ca can solve SEN clogging during CC of the silicon steel both theoretically and practically. Furthermore, the impact of the addition of Ca on the magnetic properties of the steel were analyzed. The results showed that the core loss and the magnetic induction of the silicon steel decreased by using the addition of Ca, which generated more dissolved Aluminum, and the addition of Ca generated more harmful textures, which reduced the magnetic induction.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000014-000020 ◽  
Author(s):  
James Galipeau ◽  
George Slama

As more electronics are used in down-hole energy exploration, under the hood automotive applications, and in other environments where temperatures exceed 200 °C; there is a need for compact passive magnetic components that operate reliably at elevated temperatures. Most ferrites used to make multi layer ceramic inductors have Curie temperatures in the 100–200 °C range. As temperatures rise above the Curie point ferrites lose their magnetic properties and become paramagnetic. This means that traditional multi-layer ceramic inductors suffer severe performance degradation when operated at elevated temperatures. Therefore, ferrite materials with higher Curie temperatures need to be developed to increase device performance and reliability at these high temperatures. In this work inductors were made from a low-temperature, co-fire compatible, ferrite with a Curie temperature of 350 °C. The inductors were first subjected to a 1000 hour life test at 300 °C during which the electrical parameters were found to change no more than 4 %. The inductance, resistance, core loss, and saturation flux density of the inductors were measured at various temperatures. Additional testing focused on the effect of temperature on the device's frequency profile and performance changes under thermal cycling and thermal shock.


Applied laser ◽  
2015 ◽  
Vol 35 (1) ◽  
pp. 83-87
Author(s):  
朱虹 Zhu Hong ◽  
郭亮 Guo Liang ◽  
张庆茂 Zhang Qingmao

Sign in / Sign up

Export Citation Format

Share Document