Optimal Copper/Core Loss Ratio in Magnetic Components

2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000014-000020 ◽  
Author(s):  
James Galipeau ◽  
George Slama

As more electronics are used in down-hole energy exploration, under the hood automotive applications, and in other environments where temperatures exceed 200 °C; there is a need for compact passive magnetic components that operate reliably at elevated temperatures. Most ferrites used to make multi layer ceramic inductors have Curie temperatures in the 100–200 °C range. As temperatures rise above the Curie point ferrites lose their magnetic properties and become paramagnetic. This means that traditional multi-layer ceramic inductors suffer severe performance degradation when operated at elevated temperatures. Therefore, ferrite materials with higher Curie temperatures need to be developed to increase device performance and reliability at these high temperatures. In this work inductors were made from a low-temperature, co-fire compatible, ferrite with a Curie temperature of 350 °C. The inductors were first subjected to a 1000 hour life test at 300 °C during which the electrical parameters were found to change no more than 4 %. The inductance, resistance, core loss, and saturation flux density of the inductors were measured at various temperatures. Additional testing focused on the effect of temperature on the device's frequency profile and performance changes under thermal cycling and thermal shock.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6498
Author(s):  
Fabio Corti ◽  
Alberto Reatti ◽  
Gabriele Maria Lozito ◽  
Ermanno Cardelli ◽  
Antonino Laudani

In this paper, the problem of estimating the core losses for inductive components is addressed. A novel methodology is applied to estimate the core losses of an inductor in a DC-DC converter in the time-domain. The methodology addresses both the non-linearity and dynamic behavior of the core magnetic material and the non-uniformity of the field distribution for the device geometry. The methodology is natively implemented using the LTSpice simulation environment and can be used to include an accurate behavioral model of the magnetic devices in a more complex lumped circuit. The methodology is compared against classic estimation techniques such as Steinmetz Equation and the improved Generalized Steinmetz Equation. The validation is performed on a practical DC-DC Buck converter, which was utilized to experimentally verify the results derived by a model suitable to estimate the inductor losses. Both simulation and experimental test confirm the accuracy of the proposed methodology. Thus, the proposed technique can be flexibly used both for direct core loss estimation and the realization of a subsystem able to simulate the realistic behavior of an inductor within a more complex lumped circuit.


2007 ◽  
Vol 534-536 ◽  
pp. 1321-1324 ◽  
Author(s):  
Tae Kyung Lee ◽  
Gu Hyun Kim ◽  
Gwang Bo Choi ◽  
In Bum Jeong ◽  
Kwang Youn Kim ◽  
...  

Eventhough Fe-6.5 wt.% Si alloy shows excellent magnetic properties, magnetic components made of the alloy with the composition are not totally commercialized because of its extremely low ductility. In order to overcome this demerit of alloy, 6.7 wt.% Si alloy powders were produced by gas atomization and then post-processed to form magnetic cores. By doing so, the total core loss could be minimized by reducing both hysteresis and eddy current loss, which were attributed to both grain size adjustment and particle size control. From our experiments, we were able to achive a core loss of 390 mW/cm3 at an induction of 0.1 T and 50 kHz through proper processes and a permeability μeff of 68 at low frequency was kept up to 700 kHz. These properties are compatable with the properties of well-known soft magnetic materials such as Fe-Si-Al and Ni- Fe alloys. From the above results, it can be concluded that Fe-Si alloy powders with high Si content have very high potential for the commercialization and application of the core.


Sign in / Sign up

Export Citation Format

Share Document