A flexible FPGA and SBC based electric vehicle telemetry system

Author(s):  
Iraj Fathirad ◽  
Jim Whittington
2019 ◽  
Vol 127 ◽  
pp. 123-132
Author(s):  
Przemysław Zalewski ◽  
Andrzej Czerepicki

The article presents the analysis of energy consumption for traction by a passenger electric go-kart vehicle. The topicality of the research problem is related to the popularization of personal means of transport, becoming more and more accessible to the ordinary user. Important characteristics of the energy system of the vehicle are presented. Experimental driving on designated routes was carried out, during which the original telemetry system was used to collect measurement data of selected operating characteristics of the vehicle in motion. Based on the measurement results, the average electricity consumption on the selected sections of the route was estimated, and the total consumption for all routes. Comparing short trips for different routes, the dependence of energy consumption on the driver's route profile and driving style has been confirmed. After completion of the test drive, the process of energy replenishment in the vehicle battery was recorded, and on this basis, the correctness of energy consumption calculations was verified. The data obtained during the experiment will form the basis for constructing a small electric vehicle model.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 431-438
Author(s):  
Jian Liu ◽  
Lihui Wang ◽  
Zhengqi Tian

The nonlinearity of the electric vehicle DC charging equipment and the complexity of the charging environment lead to the complex and changeable DC charging signal of the electric vehicle. It is urgent to study the distortion signal recognition method suitable for the electric vehicle DC charging. Focusing on the characteristics of fundamental and ripple in DC charging signal, the Kalman filter algorithm is used to establish the matrix model, and the state variable method is introduced into the filter algorithm to track the parameter state, and the amplitude and phase of the fundamental waves and each secondary ripple are identified; In view of the time-varying characteristics of the unsteady and abrupt signal in the DC charging signal, the stratification and threshold parameters of the wavelet transform are corrected, and a multi-resolution method is established to identify and separate the unsteady and abrupt signals. Identification method of DC charging distortion signal of electric vehicle based on Kalman/modified wavelet transform is used to decompose and identify the signal characteristics of the whole charging process. Experiment results demonstrate that the algorithm can accurately identify ripple, sudden change and unsteady wave during charging. It has higher signal to noise ratio and lower mean root mean square error.


Author(s):  
Totska Olesia ◽  
Glovatsky Anastasia

The purpose of the article is to plan a project of an electric vehicle technicalassistance point. the methodology of the study is to use the critical path method.the scientific novelty of the obtained results is that the article describes the practicalaspects of project planning of the creation of an electric vehicle technical assistancepoint. In particular, the tasks of the project are described, labor, material and financialresources necessary for its realization are specified. conclusions. The implementationof the developed project will effectively manage the content, time and resources ofthe project of the creation of an electric vehicle technical assistance point.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Author(s):  
K. Shibazaki ◽  
H. Nozaki

In this study, in order to improve steering stability during turning, we devised an inner and outer wheel driving force control system that is based on the steering angle and steering angular velocity, and verified its effectiveness via running tests. In the driving force control system based on steering angle, the inner wheel driving force is weakened in proportion to the steering angle during a turn, and the difference in driving force is applied to the inner and outer wheels by strengthening the outer wheel driving force. In the driving force control (based on steering angular velocity), the value obtained by multiplying the driving force constant and the steering angular velocity,  that differentiates the driver steering input during turning output as the driving force of the inner and outer wheels. By controlling the driving force of the inner and outer wheels, it reduces the maximum steering angle by 40 deg and it became possible to improve the cornering marginal performance and improve the steering stability at the J-turn. In the pylon slalom it reduces the maximum steering angle by 45 deg and it became possible to improve the responsiveness of the vehicle. Control by steering angle is effective during steady turning, while control by steering angular velocity is effective during sharp turning. The inner and outer wheel driving force control are expected to further improve steering stability.


Sign in / Sign up

Export Citation Format

Share Document