scholarly journals Leading-Edge Vortex Characteristics of Low-Aspect-Ratio Sweptback Plates at Low Reynolds Number

2021 ◽  
Vol 11 (6) ◽  
pp. 2450
Author(s):  
Jong-Seob Han ◽  
Christian Breitsamter

A sweptback angle can directly regulate a leading-edge vortex on various aerodynamic devices as well as on the wings of biological flyers, but the effect of a sweptback angle has not yet been sufficiently investigated. Here, we thoroughly investigated the effect of the sweptback angle on aerodynamic characteristics of low-aspect-ratio flat plates at a Reynolds number of 2.85 × 104. Direct force/moment measurements and surface oil-flow visualizations were conducted in the wind-tunnel B at the Technical University of Munich. It was found that while the maximum lift at an aspect ratio of 2.03 remains unchanged, two other aspect ratios of 3.13 and 4.50 show a gradual increment in the maximum lift with an increasing sweptback angle. The largest leading-edge vortex contribution was found at the aspect ratio of 3.13, resulting in a superior lift production at a sufficient sweptback angle. This is similar to that of a revolving/flapping wing, where an aspect ratio around three shows a superior lift production. In the oil-flow patterns, it was observed that while the leading-edge vortices at aspect ratios of 2.03 and 3.13 fully covered the surfaces, the vortex at an aspect ratio of 4.50 only covered up the surface approximately three times the chord, similar to that of a revolving/flapping wing. Based on the pattern at the aspect ratio of 4.50, a critical length of the leading-edge vortex of a sweptback plate was measured as ~3.1 times the chord.

2015 ◽  
Vol 10 (5) ◽  
pp. 056020 ◽  
Author(s):  
Nathan Phillips ◽  
Kevin Knowles ◽  
Richard J Bomphrey

2016 ◽  
Vol 799 ◽  
Author(s):  
John N. Fernando ◽  
David E. Rival

Impulsively started, low-aspect-ratio elliptical flat plates have been investigated experimentally to understand the vortex pinch-off dynamics at transitional and fully turbulent Reynolds numbers. The range of Reynolds numbers investigated is representative of those observed in animals that employ rowing and paddling modes of drag-based propulsion and manoeuvring. Elliptical flat plates with five aspect ratios ranging from one to two have been considered, as abstractions of propulsor planforms found in nature. It has been shown that Reynolds-number scaling is primarily determined by plate aspect ratio in terms of both drag forces and vortex pinch-off. Due to vortex-ring growth time scales that are longer than those associated with the development of flow instabilities, the scaling of drag is Reynolds-number-dependent for the aspect-ratio-one flat plate. With increasing aspect ratio, the Reynolds-number dependency decreases as a result of the shorter growth time scales associated with high-aspect-ratio elliptical vortex rings. Large drag peaks are observed during early-stage vortex growth for the higher-aspect-ratio flat plates. The collapse of these peaks with Reynolds number provides insight into the evolutionary convergence process of propulsor planforms used in drag-based swimming modes over diverse scales towards aspect ratios greater than one.


2014 ◽  
Vol 751 ◽  
pp. 71-105 ◽  
Author(s):  
R. R. Harbig ◽  
J. Sheridan ◽  
M. C. Thompson

AbstractThe effects of advance ratio and the wing’s aspect ratio on the structure of the leading-edge vortex (LEV) that forms on flapping and rotating wings under insect-like flight conditions are not well understood. However, recent studies have indicated that they could play a role in determining the stable attachment of the LEV. In this study, a numerical model of a flapping wing at insect Reynolds numbers is used to explore the effects of these parameters on the characteristics and stability of the LEV. The word ‘stability’ is used here to describe whether the LEV was attached throughout the stroke or if it was shed. It is demonstrated that increasing the advance ratio enhances vorticity production at the leading edge during the downstroke, and this results in more rapid growth of the LEV for non-zero advance ratios. Increasing the wing aspect ratio was found to have the effect of shortening the wing’s chord length relative to the LEV’s size. These two effects combined determine the stability of the LEV. For high advance ratios and large aspect ratios, the LEV was observed to quickly grow to envelop the entire wing during the early stages of the downstroke. Continued rotation of the wing resulted in the LEV being eventually shed as part of a vortex loop that peels away from the wing’s tip. The shedding of the LEV for high-aspect-ratio wings at non-zero advance ratios leads to reduced aerodynamic performance of these wings, which helps to explain why a number of insect species have evolved to have low-aspect-ratio wings.


2013 ◽  
Vol 717 ◽  
pp. 166-192 ◽  
Author(s):  
R. R. Harbig ◽  
J. Sheridan ◽  
M. C. Thompson

AbstractPrevious studies investigating the effect of aspect ratio ($\mathit{AR}$) for insect-like regimes have reported seemingly different trends in aerodynamic forces, however no detailed flow observations have been made. In this study, the effect of $\mathit{AR}$ and Reynolds number on the flow structures over insect-like wings is explored using a numerical model of an altered fruit fly wing revolving at a constant angular velocity. Increasing the Reynolds number for an $\mathit{AR}$ of 2.91 resulted in the development of a dual leading-edge vortex (LEV) structure, however increasing $\mathit{AR}$ at a fixed Reynolds number generated the same flow structures. This result shows that the effects of Reynolds number and $\mathit{AR}$ are linked. We present an alternative scaling using wing span as the characteristic length to decouple the effects of Reynolds number from those of $\mathit{AR}$. This results in a span-based Reynolds number, which can be used to independently describe the development of the LEV. Indeed, universal behaviour was found for various parameters using this scaling. The effect of $\mathit{AR}$ on the vortex structures and aerodynamic forces was then assessed at different span-based Reynolds numbers. Scaling the flow using the wing span was found to apply when a strong spanwise velocity is present on the leeward side of the wing and therefore may prove to be useful for similar studies involving flapping or rotating wings at high angles of attack.


2020 ◽  
Vol 61 (9) ◽  
Author(s):  
Lei Dong ◽  
Kwing-So Choi ◽  
Xuerui Mao

Abstract Three-dimensional vortical structures and their interaction over a low-aspect-ratio thin wing have been studied via particle image velocimetry at the chord Reynolds number of $$10^5$$ 10 5 . The maximum lift of this thin wing is found at an angle of attack of $$42^\circ$$ 42 ∘ . The flow separates at the leading-edge and reattaches to the wing surface, forming a strong leading-edge vortex which plays an important role on the total lift. The results show that the induced velocity of the tip vortex increases with the angle of attack, which helps reattach the separated flow and maintains the leading-edge vortex. Turbulent mixing indicated by the high Reynolds stress can be observed near the leading-edge due to an intense interaction between the leading-edge vortex and the tip vortex; however, the reattachment point of the leading-edge vortex moves upstream closer to the wing tip. Graphic abstract


1999 ◽  
Vol 121 (3) ◽  
pp. 558-568 ◽  
Author(s):  
M. B. Kang ◽  
A. Kohli ◽  
K. A. Thole

The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.


2018 ◽  
Vol 15 (143) ◽  
pp. 20170933 ◽  
Author(s):  
T. Jardin ◽  
T. Colonius

Lentink & Dickinson (2009 J. Exp. Biol. 212 , 2705–2719. ( doi:10.1242/jeb.022269 )) showed that rotational acceleration stabilized the leading-edge vortex on revolving, low aspect ratio (AR) wings and hypothesized that a Rossby number of around 3, which is achieved during each half-stroke for a variety of hovering insects, seeds and birds, represents a convergent high-lift solution across a range of scales in nature. Subsequent work has verified that, in particular, the Coriolis acceleration plays a key role in LEV stabilization. Implicit in these results is that there exists an optimal AR for wings revolving about their root, because it is otherwise unclear why, apart from possible morphological reasons, the convergent solution would not occur for an even lower Rossby number. We perform direct numerical simulations of the flow past revolving wings where we vary the AR and Rossby numbers independently by displacing the wing root from the axis of rotation. We show that the optimal lift coefficient represents a compromise between competing trends with competing time scales where the coefficient of lift increases monotonically with AR, holding Rossby number constant, but decreases monotonically with Rossby number, when holding AR constant. For wings revolving about their root, this favours wings of AR between 3 and 4.


Sign in / Sign up

Export Citation Format

Share Document