Modified quasi static energy recovery adiabatic logic implementation for low power application

Author(s):  
M. L. Keote ◽  
P. T. Karule
2019 ◽  
Vol 8 (2) ◽  
pp. 1896-1901

This work depends on another methodology for limiting vitality utilization in semi static vitality recuperation rationale of Modified Quasi Static Energy Recovery Logic (MQSERL) circuit which includes enhancement by expelling the non-adiabatic misfortunes totally. Vitality recouping hardware dependent on adiabatic standards is a promising system driving towards low power superior circuit plan. The productivity of such circuits might be expanded by lessening the adiabatic and non-adiabatic misfortunes drawn by them amid the charging and recuperation tasks. In this paper, execution of the proposed rationale style is broke down and contrasted and CMOS in their agent inverters, entryways, flip- flop and snake circuits. Every one of the circuit was reproduced by test system of TANNER TOOL in 0.18μm innovation. In our proposed inverter the vitality proficiency has been enhanced to practically 30% and 20% up to 20MHz and 20fF outside load capacitance in contrast with CMOS and MQSERL circuits individually. Our proposed circuit gives vitality proficient execution up to 100 MHz and in this way it has ended up being utilized in superior VLSI hardware.


2017 ◽  
Vol 13 (3) ◽  
pp. 472-481 ◽  
Author(s):  
Manash Chanda ◽  
Tanushree Ganguli ◽  
Sandipta Mal ◽  
Anindita Podder ◽  
Chandan Kumar Sarkar

2017 ◽  
Vol 27 (04) ◽  
pp. 1850052 ◽  
Author(s):  
P. Sasipriya ◽  
V. S. Kanchana Bhaaskaran

This paper presents the quasi-adiabatic logic for low power powered by two phase sinusoidal clock signal. The proposed logic called two phase adiabatic dynamic logic (2PADL) realizes the advantages of energy efficiency through the use of gate overdrive and reduced switching power. It has a single rail output and the proposed logic does not require the complementary input signals for any of its variables. The 2PADL logic is operated by two complementary clock signals acting as power supply. The validation of the proposed logic is carried out through practical circuits such as (i) sequential circuits using energy recovery technique suitable for memory circuits, (ii) an adiabatic carry look ahead adder (CLA) designed using 2PADL to study the speed performance and to prove its energy efficiency across a range of frequencies and (iii) a multiplier circuit using 2PADL compared against CMOS counterpart. The CLA adder is also implemented using the other static adiabatic logics, namely, quasi static energy recovery logic (QSERL), clocked CMOS adiabatic logic (CCAL) and conventional static CMOS logic to compare against 2PADL and validate its power advantages. The performance of the CCAL logic is tested for higher frequencies by implementing the widely presented CLA circuit. The result proves that the design is energy efficient and operates up to the frequency of 600 MHz. The simulation was carried out using industry standard Cadence® Virtuoso tool using 180[Formula: see text]nm technology library files.


Sign in / Sign up

Export Citation Format

Share Document