Dynamic selection of cluster head in cluster of cluster heads within the cluster in Heterogeneous Wireless Sensor Network

Author(s):  
Suryakant Soni ◽  
Biswanath Dey
Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Extending the lifetime of a wireless sensor network is vital in ensuring continuous monitoring functions in a target environment. Many techniques have appeared that seek to achieve such prolonged sensing gains. Clustering and improved selection of cluster heads play essential roles in the performance of sensor network functions. Cluster head in a hierarchical arrangement is responsible for transmitting aggregated data from member nodes to a base station for further user-specific data processing and analysis. Minimising the quick dissipation of cluster heads energy requires a careful choice of network factors when selecting a cluster head to prolong the lifetime of a wireless sensor network. In this work, we propose a multi-criteria cluster head selection technique to extend the sensing lifetime of a heterogeneous wireless sensor network. The proposed protocol incorporates residual energy, distance, and node density in selecting a cluster head. Each factor is assigned a weight using the Rank Order Centroid based on its relative importance. Several simulation tests using MATLAB 7.5.0 (R2007b) reveal improved network lifetime and other network performance indicators, including stability and throughput, compared with popular protocols such as LEACH and the SEP. The proposed scheme will be beneficial in applications requiring reliable and stable data sensing and transmission functions.


2020 ◽  
Vol 21 (3) ◽  
pp. 555-568
Author(s):  
Anshu Kumar Dwivedi ◽  
A. K. Sharma

The uttermost requirement of the wireless sensor network is prolonged lifetime. Unequal energy degeneration in clustered sensor nodes lead to the premature death of sensor nodes resulting in a lessened lifetime. Most of the proposed protocols primarily choose cluster head on the basis of a random number, which is somewhat discriminating as some nodes which are eligible candidates for cluster head role may be skipped because of this randomness. To rule out this issue, we propose a deterministic novel energy efficient fuzzy logic based clustering protocol (NEEF) which considers primary and secondary factors in fuzzy logic system while selecting cluster heads. After selection of cluster heads, non-cluster head nodes use fuzzy logic for prudent selection of their cluster head for cluster formation. NEEF is simulated and compared with two recent state of the art protocols, namely SCHFTL and DFCR under two scenarios. Simulation results unveil better performance by balancing the load and improvement in terms of stability period, packets forwarded to the base station, improved average energy and extended lifetime.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Aruna Pathak

In wireless sensor network, replacement of node’s battery is very tough task in hostile environments. Therefore, to maximize network lifetime is the ultimate solution. Dividing the sensing region of wireless sensor network into clusters is an excellent approach to gain high energy efficiency and to enhance lifetime of the network. On the other hand, heads of the cluster need additional energy because of additional work such as obtaining data from its member nodes, aggregation of their data, and finally sending it to the base station. To enhance the lifetime of these networks, proper selection of heads plays a vital role. In this paper, we propose proficient bee colony-clustering protocol (PBC-CP) which is based on artificial bee colony algorithm. In PBC-CP approach, we have taken important factors for selection of heads such as node’s energy, degree of node, and distance from base station to node. For transmitting the data from cluster head to base station, it chooses the energy-efficient path which further minimizes the energy consumption of sensor network. Simulation experiments show the effectiveness of our proposed approach.


2013 ◽  
Vol 765-767 ◽  
pp. 980-984
Author(s):  
Xi Rong Bao ◽  
Jia Hua Xie ◽  
Shuang Long Li

This article focused on the energy limit property of Wireless Sensor Network, and proposed a residual energy based algorithm WN-LEACH, with the classic network mode of LEACH routing algorithm. The algorithm combines the proportion of residual energy in the total energy with the cumulative number of the normal nodes supported by the cluster heads as a cluster selection reference. In order to balance the energy consumption of each cluster-head, the algorithm took both the different positions of the base station and the initial energy of the network into consideration, and weighted the two factors to balance the energy consumption between transmitting the signals and data fusion. Simulation results show that the algorithm can promote the lifetime of the uneven energy network and does not impair the effects of the LEACH algorithm.


2019 ◽  
Vol 14 (2) ◽  
pp. 183-198 ◽  
Author(s):  
Jothi Kumar C ◽  
Revathi Venkataraman

Wireless Sensor Network comprises of a number of small wireless nodes whose role is to sense, gather, process and communicate. One of the primary concerns of the network is to optimize the energy consumption and extend the network lifespan. Sensor nodes can be clustered to increase the network lifespan. This is done by selecting the cluster head for every cluster and by performing data fusion on the cluster head. The proposed system is using an energy efficient hierarchical routing protocol named Energy Optimized Dynamic Clustering (EODC) for clustering large ad-hoc WSN and route the data towards the sink. The sink receives the data collected from the set of cluster heads after every round. The cluster head was selected using Particle Swarm Optimization (PSO) approach and the cluster members are allocated based on Manhattan distance. The metrics used to find the fitness function are location, link quality, energy of active node and energy of inactive node. The system employs shortest path approach to communicate between the cluster heads till it reaches the base station. By this, we have increased the energy efficiency and lifetime of the network. The analysis and outcomes show that the EODC was found to outperform the existing protocol which compares with this algorithm.


Author(s):  
Gaurav Kumar ◽  
Harjit Pal Singh

Life time of sensor network is very crucial and hot topic of research in wireless sensor network (WSN) from past to future. It is crucial due to system recharging and replacing the sensors are difficult and costly affair. Clustering provides some solution to extend the network lifetime. Existing clustering algorithms, such as LEACH and other heterogeneous routing protocol, can significantly minimize the power consumption on each sensor and prolong the network lifetime but not consideration of coverage network area. Balanced Energy Efficient Multi-hop (BEEM) algorithm has implemented to simulated WSN network and the selection of the cluster head on the basis of firefly (FF) optimization algorithm. Performance of the proposed hybrid Algorithm is well suited in terms of energy consumptions, stability period, network lifetime, throughput, Alive & Dead Nodes & other parameters. Proposed algorithm has showed improved result in energy consumption with firefly-BEEM over the existing BEEM.


Sign in / Sign up

Export Citation Format

Share Document