The Research and Development as Well as Industrialization of Power Train Control Unit based on Changan Hybrid Electric Vehicle

Author(s):  
Lin Fu ◽  
Jin-Qiang Yu ◽  
Hong Xiao
2016 ◽  
Vol 78 (6) ◽  
Author(s):  
Mohd Sabirin Rahmat ◽  
Fauzi Ahmad ◽  
Ahmad Kamal Mat Yamin ◽  
Noreffendy Tamaldin ◽  
Vimal Rau Aparow ◽  
...  

This paper provided a validated modeling and a simulation of a 6 degree freedom vehicle longitudinal model and drive-train component in a series hybrid electric vehicle. The 6-DOF vehicle dynamics model consisted of tire subsystems, permanent magnet synchronous motor which acted as the prime mover coupled with an automatic transmission, hydraulic brake subsystem, battery subsystem, alternator subsystem and internal combustion engine to supply the rotational input to the alternator. A speed and torque tracking control systems of the electric power train were developed to make sure that the power train was able to produce the desired throttle torque in accelerating the vehicle. A human-in-the-loop-simulation was utilized as a mechanism to evaluate the effectiveness of the proposed hybrid electric vehicle. The proposed simulation was used as the preliminary result in identifying the capability of the vehicle in terms of the maximum speed produced by the vehicle and the capability of the alternator to recharge the battery. Several tests had been done during the simulation, namely sudden acceleration, acceleration and braking test and unbounded motion. The results of the simulation showed that the proposed hybrid electric vehicle can produce a speed of up to 70 km/h with a reasonable charging rate to the battery. The findings from this study can be considered in terms of design, optimization and implementation in a real vehicle.


2012 ◽  
Vol 260-261 ◽  
pp. 331-336
Author(s):  
Zhen Tong Liu ◽  
Hong Wen He ◽  
Wei Qing Li

Power train of hybrid electric vehicle (HEV) equipped with automated mechanical transmission (AMT) is made up of engine, electric motor, batteries and propulsion system. Shift schedule can’t be worked out with the same way of conventional AMT vehicle. Based on the optimal torque distribution strategy and analysis of the driving efficiency for parallel hybrid electric vehicle (PHEV), a new economy shift schedule for PHEVs equipped with AMT is proposed to maximize the driving efficiency. The MATLAB/CRUISE co-simulation results show that the proposed shift schedule can more efficiently improve the fuel economy performance.


Author(s):  
Pritish R. Parida ◽  
Srinath V. Ekkad ◽  
Khai Ngo

Necessitated by the dwindling supply of petroleum resources, various new automotive technologies have been actively developed from the perspective of achieving energy security and diversifying energy sources. Hybrid electric vehicles and electric vehicles are a few such examples. Such diversification requires the use of power control units essentially for power control, power conversion, and power conditioning applications such as variable speed motor drives (dc–ac conversion), dc–dc converters and other similar devices. The power control unit of a hybrid electric vehicle or electric vehicle is essentially the brain of the hybrid system as it manages the power flow between the electric motor generator, battery and gas engine. Over the last few years, the performance of this power control unit has been improved and size has been reduced to attain higher efficiency and performance, causing the heat dissipation as well as heat density to increase significantly. Efforts are constantly being made to reduce this size even further. As a consequence, a better high performance cooler/heat exchanger is required to maintain the active devices temperature within optimum range. Cooling schemes based on multiple parallel channels are a few solutions which have been widely used to dissipate transient and steady concentrated heat loads and can be applied to existing cooling system with minor modifications. The aim of the present study has therefore been to study the various cooling options based on mini-channel and rib-turbulated mini-channel cooling for application in a hybrid electric vehicle and other similar consumer products, and perform a parametric and optimization study on the selected designs. Significant improvements in terms of thermal performance, reduced overall pressure drop, and volume reduction have been shown both experimentally and numerically. This paper is the first part in a two part submission and focuses on the design and evaluation of mini-channel and rib-turbulated mini-channel cooling configurations. The second part of this paper discusses the manufacturing and testing of the cooling device.


Sign in / Sign up

Export Citation Format

Share Document