Modeling of Electric Vehicle Charging Energy Consumption using Machine Learning

Author(s):  
Dionysius A. Renata ◽  
Khotimatul Fauziah ◽  
Prasetyo Aji ◽  
Adisa Larasati ◽  
Hafsah Halidah ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5781
Author(s):  
Jiwon Lee ◽  
Midam An ◽  
Yongku Kim ◽  
Jung-In Seo

Currently, more than 30% of the fine dust generated in the Seoul metropolitan area is a pollutant emitted from automobiles such as diesel vehicles, and air pollution caused by this is becoming increasingly serious. In addition, the importance of electric vehicle distribution is increasing due to the strengthening of international environmental regulations on automobile exhaust gas and increasing the possibility of depletion of petroleum resources. This manuscript proposes a method for selecting an optimal electric vehicle charging station location in expanding charging facilities to activate electric vehicle distribution. For the sake of illustration, directions will be provided on how to select the best location for electric vehicle charging stations using data from Seoul, which has the best access. As the features, the number of living population and work force people and the number of guest facilities, which are determined to affect demand for quick charging, are considered. The missing values of the observed data are imputed based on the kriging technique from spatial correlation, and by segmenting the data through clustering, a representative technique of unsupervised learning, the characteristics of each cluster are examined and the characteristics of the clusters are identified. In addition, machine learning techniques such as the elastic net, random forest, support vector machine, and extreme gradient boosting are applied to examine the influence of the features used in predicting classes of data. In clustering analysis, the optimal number of clusters was determined to be 3 based on the heuristic and information-theoretic methods, and all the machine learning techniques considered showed that the number of work force population is the most important feature in predicting classes of data. All things considered from our results, it is reasonable to install quick electric vehicle charging stations in the places with the highest concentration of work force population and guest facility.


2020 ◽  
Vol 12 (7) ◽  
pp. 2579 ◽  
Author(s):  
Ashish Kumar Karmaker ◽  
Md. Alamgir Hossain ◽  
Nallapaneni Manoj Kumar ◽  
Vishnupriyan Jagadeesan ◽  
Arunkumar Jayakumar ◽  
...  

The growing popularity of electric vehicles (EV) is creating an increasing burden on the power grid in Bangladesh due to massive energy consumption. Due to this uptake of variable energy consumption, environmental concerns, and scarcity of energy lead to investigate alternative energy resources that are readily available and environment friendly. Bangladesh has enormous potential in the field of renewable resources, such as biogas and biomass. Therefore, this paper proposes a design of a 20 kW electric vehicle charging station (EVCS) using biogas resources. A comprehensive viability analysis is also presented for the proposed EVCS from technological, economic, and environmental viewpoints using the HOMER (Hybrid Optimization of Multiple Energy Resources) model. The viability result shows that with the capacity of 15–20 EVs per day, the proposed EVCS will save monthly $16.31 and $29.46, respectively, for easy bike and auto-rickshaw type electric vehicles in Bangladesh compare to grid electricity charging. Furthermore, the proposed charging station can reduce 65.61% of CO2 emissions than a grid-based charging station.


Sign in / Sign up

Export Citation Format

Share Document