Biomechanical Modeling of Bone-Needle Interaction for Haptic Rendering in Needle Insertion Simulation

Author(s):  
J.S.K. Ong ◽  
C.K. Chui ◽  
Z.L. Wang ◽  
J. Zhang ◽  
J.C.M. Teo ◽  
...  
2019 ◽  
Vol 3 (5) ◽  
pp. 42-49
Author(s):  
Pedro Vieira Sarmet Moreira ◽  
◽  
Kristy Alejandra Godoy Jaimes ◽  
Luciano Luporini Menegaldo ◽  
◽  
...  

2012 ◽  
Vol 21 (4) ◽  
pp. 470-489 ◽  
Author(s):  
Amine Chellali ◽  
Cedric Dumas ◽  
Isabelle Milleville-Pennel

In interventional radiology, physicians require high haptic sensitivity and fine motor skills development because of the limited real-time visual feedback of the surgical site. The transfer of this type of surgical skill to novices is a challenging issue. This paper presents a study on the design of a biopsy procedure learning system. Our methodology, based on a task-centered design approach, aims to bring out new design rules for virtual learning environments. A new collaborative haptic training paradigm is introduced to support human-haptic interaction in a virtual environment. The interaction paradigm supports haptic communication between two distant users to teach a surgical skill. In order to evaluate this paradigm, a user experiment was conducted. Sixty volunteer medical students participated in the study to assess the influence of the teaching method on their performance in a biopsy procedure task. The results show that to transfer the skills, the combination of haptic communication with verbal and visual communications improves the novices’ performance compared to conventional teaching methods. Furthermore, the results show that, depending on the teaching method, participants developed different needle insertion profiles. We conclude that our interaction paradigm facilitates expert-novice haptic communication and improves skills transfer; and new skills acquisition depends on the availability of different communication channels between experts and novices. Our findings indicate that the traditional fellowship methods in surgery should evolve to an off-patient collaborative environment that will continue to support visual and verbal communication, but also haptic communication, in order to achieve a better and more complete skills training.


2014 ◽  
Vol 30 (6) ◽  
pp. 413-414 ◽  
Author(s):  
Gorm Erlend Oesterlie ◽  
Klaus Kjaer Petersen ◽  
Lars Knudsen ◽  
Tine Brink Henriksen

1998 ◽  
Vol 1 (2) ◽  
pp. 107-121
Author(s):  
Khaled W. Al-Eisawi ◽  
Carter J. Kerk ◽  
Jerome J. Congleton

This study evaluated wrist strength limitations to manual exertion capability in two-dimensional static biomechanical modeling. The researchers hypothesized that wrist strength does not limit manual exertion capability - an assumption commonly made in many strength biomechanical models. An experiment was conducted on 15 right-handed males of college age. Isometric wrist flexion strength was measured at two elbow angles: 90 degree and 135 degree and in two wrist positions: neutral and 45 degree extended. Isometric wrist radial deviation strength was measured at the same two elbow angles and in two wrist positions: neutral and 30 degree ulnarly deviated. Minimum wrist strength limits for which wrist strength does not limit maximal moments about the elbow in manual hand exertions were calculated and compared to their corresponding measured wrist strength moments using paired t-tests. In general, wrist strength was non-limiting. However, wrist flexion strength in the 45 degree extended wrist posture was limiting. Weak-wrist subjects showed more wrist strength limitations than strong-wrist subjects.


Author(s):  
Sarah Latus ◽  
Johanna Sprenger ◽  
Maximilian Neidhardt ◽  
Julia Schadler ◽  
Alexandra Ron ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document