Robust tracking control of 4-SPS(PS) type parallel manipulator via adaptive fuzzy logic approach

Author(s):  
Dachang Zhu ◽  
Jinbao Cai ◽  
Yuefa Fang
2014 ◽  
Vol 29 (4) ◽  
pp. 1822-1830 ◽  
Author(s):  
Hassan A. Yousef ◽  
Khalfan AL-Kharusi ◽  
Mohammed H. Albadi ◽  
Nasser Hosseinzadeh

2009 ◽  
Vol 10 (1) ◽  
pp. 400 ◽  
Author(s):  
Cheng-Long Chuang ◽  
Kenneth Hung ◽  
Chung-Ming Chen ◽  
Grace S Shieh

2014 ◽  
Vol 15 (2) ◽  
Author(s):  
Yew-Chung Chak ◽  
Renuganth Varatharajoo

ABSTRACT: The capability of navigating Unmanned Aerial Vehicles (UAVs) safely in unknown terrain offers huge potential for wider applications in non-segregated airspace. Flying in non-segregated airspace present a risk of collision with static obstacles (e.g., towers, power lines) and moving obstacles (e.g., aircraft, balloons). In this work, we propose a heuristic cascading fuzzy logic control strategy to solve for the Conflict Detection and Resolution (CD&R) problem, in which the control strategy is comprised of two cascading modules. The first one is Obstacle Avoidance control and the latter is Path Tracking control. Simulation results show that the proposed architecture effectively resolves the conflicts and achieve rapid movement towards the target waypoint.ABSTRAK: Keupayaan mengemudi Kenderaan Udara Tanpa Pemandu (UAV) dengan selamat di kawasan yang tidak diketahui menawarkan potensi yang besar untuk aplikasi yang lebih luas dalam ruang udara yang tidak terasing. Terbang di ruang udara yang tidak terasing menimbulkan risiko perlanggaran dengan halangan statik (contohnya, menara, talian kuasa) dan halangan bergerak (contohnya, pesawat udara, belon). Dalam kajian ini, kami mencadangkan satu strategi heuristik kawalan logik kabur yang melata untuk menyelesaikan masalah Pengesanan Konflik dan Penyelesaian (CD&R), di mana strategi kawalan yang terdiri daripada dua modul melata. Hasil simulasi menunjukkan bahawa seni bina yang dicadangkan berjaya menyelesaikan konflik dan mencapai penerbangan pesat ke arah titik laluan sasaran.KEYWORDS: fuzzy logic; motion planning; obstacle avoidance; path tracking; reactive navigation; UAV


2015 ◽  
Vol 15 (1) ◽  
pp. 34-45
Author(s):  
Sanxiu Wang ◽  
Kexin Xing ◽  
Zhengchu Wang

Abstract In this paper an adaptive fuzzy H∞ robust tracking control scheme is developed for a class of uncertain nonlinear Multi-Input and Multi-Output (MIMO) systems. Firstly, fuzzy logic systems are introduced to approximate the unknown nonlinear function of the system by an adaptive algorithm. Next, a H∞ robust compensator controller is employed to eliminate the effect of the approximation error and external disturbances. Consequently, a fuzzy adaptive robust controller is proposed, such that the tracking error of the resulting closed-loop system converges to zero and the tracking robustness performance can be guaranteed. The simulation results performed on a two-link robotic manipulator demonstrate the validity of the proposed control scheme.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kun Mu ◽  
Cong Liu ◽  
Jinzhu Peng

Based on fuzzy logic system (FLS) andH∞control methodologies, a robust tracking control scheme is proposed for robotic system with uncertainties and external disturbances. FLS is employed to implement the framework of computed torque control (CTC) method via its approximate capability which is used to attenuate the nonlinearity of robotic manipulator. The robustH∞control can guarantee robustness to parametric and dynamics uncertainties and also attenuate the effect of immeasurable external disturbances entering the system. Moreover, a quadratic stability approach is used to reduce the conservatism of the conventional robust control approach. It can be guaranteed that all signals in the closed-loop are bounded by employing the proposed robust tracking control. The validity of the proposed control scheme is shown by simulation of a two-link robotic manipulator.


2021 ◽  
Vol 11 (2) ◽  
pp. 6935-6942
Author(s):  
H. Medjoubi ◽  
A. Yassine ◽  
H. Abdelouahab

This paper presents a new design of an adaptive fuzzy logic control by implementing the leader-follower approach. The principle is to modify the feedback control of non-holonomic Wheeled Mobile Robot (WMR) to be adaptive according to a fuzzy controller in the control loop, in order to adjust the feedback control gains according to the distance error between the reference path and the real position. The trajectory tracking control for a single WMR is extended to the formation control for two WMRs in which the first one is the leader and the second is the follower. Simulation results are presented to demonstrate the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document