Helicopter flight control using inverse optimal control and backstepping

Author(s):  
Hamid Teimoori ◽  
Hemanshu R. Pota ◽  
Matt Garratt ◽  
Mahendra K. Samal
Author(s):  
Zhong‐Xin Fan ◽  
Avizit Chandra Adhikary ◽  
Shihua Li ◽  
Rongjie Liu

Robotica ◽  
2000 ◽  
Vol 18 (3) ◽  
pp. 299-303 ◽  
Author(s):  
Carl-Henrik Oertel

Machine vision-based sensing enables automatic hover stabilization of helicopters. The evaluation of image data, which is produced by a camera looking straight to the ground, results in a drift free autonomous on-board position measurement system. No additional information about the appearance of the scenery seen by the camera (e.g. landmarks) is needed. The technique being applied is a combination of the 4D-approach with two dimensional template tracking of a priori unknown features.


2017 ◽  
Author(s):  
Malika Yaici ◽  
Kamel Hariche ◽  
Tim Clarke

2020 ◽  
Vol 19 (4) ◽  
pp. 123-132 ◽  
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Federico Martin Serra

In this paper it is presented the design of a controller for a reaction wheel pendulum using a discrete-time representation via optimal control from the point of view of passivity-based control analysis. The main advantage of the proposed approach is that it allows to guarantee asymptotic stability convergence using a quadratic candidate Lyapunovfunction. Numerical simulations show that the proposed inverse optimal control design permits to reach superiornumerical performance reported by continuous approaches such as Lyapunov control functions and interconnection,and damping assignment passivity-based controllers. An additional advantageof the proposed inverse optimal controlmethod is its easy implementation since it does not employ additional states. It is only required a basic discretizationof the time-domain dynamical model based on the backward representation. All the simulations are carried out inMATLAB/OCTAVE software using a codification on the script environment.


Sign in / Sign up

Export Citation Format

Share Document