Intrinsic distance lower bound for unbiased estimators on Riemannian manifolds

Author(s):  
Xavier ◽  
Barroso
2013 ◽  
Vol 209 ◽  
pp. 1-22 ◽  
Author(s):  
Shouhei Honda

AbstractWe call a Gromov–Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. Furthermore, we prove that any Ricci limit space has integral Hausdorff dimension, provided that its Hausdorff dimension is not greater than 2. We also classify 1-dimensional Ricci limit spaces.


2007 ◽  
Vol 76 (1) ◽  
pp. 155-160 ◽  
Author(s):  
A. Carbonaro ◽  
G. Mauceri

In a recent paper Miranda Jr., Pallara, Paronetto and Preunkert have shown that the classical De Giorgi's heat kernel characterisation of functions of bounded variation on Euclidean space extends to Riemannian manifolds with Ricci curvature bounded from below and which satisfy a uniform lower bound estimate on the volume of geodesic balls of fixed radius. We give a shorter proof of the same result assuming only the lower bound on the Ricci curvature.


2019 ◽  
Vol 27 (2) ◽  
pp. 179-211
Author(s):  
Luca Sabatini

AbstractWe set out to obtain estimates of the Laplacian Spectrum of Riemannian manifolds with non-empty boundary. This was achieved using standard doubled manifold techniques. In simple terms, we pasted two copies of the same manifold along their common boundary thereby obtaining a Riemannian manifold with empty boundary and with a C0−metric. This made it possible to adapt some estimates of the spectrum dependent on the volume or genus of the manifold as calculated in recent years by several authors. In order to extend further estimates that depend on the curvature, it is necessary to regularize the metric of the doubled manifold so that the new metric is isometric to that of each copy and such that the curvature has a finite lower bound. Controlling the curvature in this way also makes estimates of topological invariants available.


Author(s):  
Brian Benson ◽  
Peter Ralli ◽  
Prasad Tetali

Abstract We study the volume growth of metric balls as a function of the radius in discrete spaces and focus on the relationship between volume growth and discrete curvature. We improve volume growth bounds under a lower bound on the so-called Ollivier curvature and discuss similar results under other types of discrete Ricci curvature. Following recent work in the continuous setting of Riemannian manifolds (by the 1st author), we then bound the eigenvalues of the Laplacian of a graph under bounds on the volume growth. In particular, $\lambda _2$ of the graph can be bounded using a weighted discrete Hardy inequality and the higher eigenvalues of the graph can be bounded by the eigenvalues of a tridiagonal matrix times a multiplicative factor, both of which only depend on the volume growth of the graph. As a direct application, we relate the eigenvalues to the Cheeger isoperimetric constant. Using these methods, we describe classes of graphs for which the Cheeger inequality is tight on the 2nd eigenvalue (i.e. the 1st nonzero eigenvalue). We also describe a method for proving Buser’s Inequality in graphs, particularly under a lower bound assumption on curvature.


Author(s):  
Michael Eichmair ◽  
Gregory J. Galloway ◽  
Abraão Mendes

AbstractWe prove several rigidity results related to the spacetime positive mass theorem. A key step is to show that certain marginally outer trapped surfaces are weakly outermost. As a special case, our results include a rigidity result for Riemannian manifolds with a lower bound on their scalar curvature.


Sign in / Sign up

Export Citation Format

Share Document