Spherical Harmonic Representation for Dynamic Sound-Field Measurements

Author(s):  
Fabrice Katzberg ◽  
Marco Maass ◽  
Alfred Mertins
2015 ◽  
Vol 9 (5) ◽  
pp. 852-866 ◽  
Author(s):  
Archontis Politis ◽  
Juha Vilkamo ◽  
Ville Pulkki

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3674 ◽  
Author(s):  
Wei Lu ◽  
Yu Lan ◽  
Rongzhen Guo ◽  
Qicheng Zhang ◽  
Shichang Li ◽  
...  

A spiral sound wave transducer comprised of longitudinal vibrating elements has been proposed. This transducer was made from eight uniform radial distributed longitudinal vibrating elements, which could effectively generate low frequency underwater acoustic spiral waves. We discuss the production theory of spiral sound waves, which could be synthesized by two orthogonal acoustic dipoles with a phase difference of 90 degrees. The excitation voltage distribution of the transducer for emitting a spiral sound wave and the measurement method for the transducer is given. Three-dimensional finite element modeling (FEM)of the transducer was established for simulating the vibration modes and the acoustic characteristics of the transducers. Further, we fabricated a spiral sound wave transducer based on our design and simulations. It was found that the resonance frequency of the transducer was 10.8 kHz and that the transmitting voltage resonance was 140.5 dB. The underwater sound field measurements demonstrate that our designed transducer based on the longitudinal elements could successfully generate spiral sound waves.


2013 ◽  
Vol 7 (6) ◽  
pp. 1901-1914 ◽  
Author(s):  
W. Colgan ◽  
S. Luthcke ◽  
W. Abdalati ◽  
M. Citterio

Abstract. We use a Monte Carlo approach to invert a spherical harmonic representation of cryosphere-attributed mass change in order to infer the most likely underlying mass changes within irregularly shaped ice-covered areas at nominal 26 km resolution. By inverting a spherical harmonic representation through the incorporation of additional fractional ice coverage information, this approach seeks to eliminate signal leakage between non-ice-covered and ice-covered areas. The spherical harmonic representation suggests a Greenland mass loss of 251 ± 25 Gt a−1 over the December 2003 to December 2010 period. The inversion suggests 218 ± 20 Gt a−1 was due to the ice sheet proper, and 34 ± 5 Gt a−1 (or ~14%) was due to Greenland peripheral glaciers and ice caps (GrPGICs). This mass loss from GrPGICs exceeds that inferred from all ice masses on both Ellesmere and Devon islands combined. This partition therefore highlights that GRACE-derived "Greenland" mass loss cannot be taken as synonymous with "Greenland ice sheet" mass loss when making comparisons with estimates of ice sheet mass balance derived from techniques that sample only the ice sheet proper.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S173
Author(s):  
B. Lv ◽  
H.G. He ◽  
M. Li ◽  
J.J. Lu ◽  
W.J. Li ◽  
...  

2018 ◽  
Vol 860 ◽  
pp. 1-4 ◽  
Author(s):  
Jonathan B. Freund

Jet noise prediction is notoriously challenging because only subtle features of the flow turbulence radiate sound. The article by Brès et al. (J. Fluid Mech., vol. 851, 2018, pp. 83–124) shows that a well-constructed modelling procedure for the nozzle turbulence can provide unprecedented sub-dB prediction accuracy with modest-scale large-eddy simulations, as confirmed by detailed comparison with turbulence and sound-field measurements. This both illuminates the essential mechanisms of the flow and facilitates prediction for engineering design.


2010 ◽  
Vol 37B (2) ◽  
pp. 45-55 ◽  
Author(s):  
Zhengyi Yang ◽  
Viktor Vegh ◽  
Quang M. Tieng ◽  
Louise M. Olsen-Kettle ◽  
Deming Wang

1997 ◽  
Vol 4 (1) ◽  
pp. A65-A68 ◽  
Author(s):  
Kentaro Nakamura ◽  
Koichiro Fukaya

Sign in / Sign up

Export Citation Format

Share Document