Case-based reasoning system based on Bayesian rough set and hierarchical mixture of experts model

Author(s):  
Yang Li ◽  
Min Han
Author(s):  
Bjørn Magnus Mathisen ◽  
Kerstin Bach ◽  
Agnar Aamodt

AbstractAquaculture as an industry is quickly expanding. As a result, new aquaculture sites are being established at more exposed locations previously deemed unfit because they are more difficult and resource demanding to safely operate than are traditional sites. To help the industry deal with these challenges, we have developed a decision support system to support decision makers in establishing better plans and make decisions that facilitate operating these sites in an optimal manner. We propose a case-based reasoning system called aquaculture case-based reasoning (AQCBR), which is able to predict the success of an aquaculture operation at a specific site, based on previously applied and recorded cases. In particular, AQCBR is trained to learn a similarity function between recorded operational situations/cases and use the most similar case to provide explanation-by-example information for its predictions. The novelty of AQCBR is that it uses extended Siamese neural networks to learn the similarity between cases. Our extensive experimental evaluation shows that extended Siamese neural networks outperform state-of-the-art methods for similarity learning in this task, demonstrating the effectiveness and the feasibility of our approach.


2020 ◽  
Vol 9 (2) ◽  
pp. 267
Author(s):  
I Gede Teguh Mahardika ◽  
I Wayan Supriana

Culinary is one of the favorite businesses today. The number of considerations to choose a restaurant or place to visit becomes one of the factors that is difficult to determine the restaurant or place to eat. To get the desired place to eat advice, one needs a recommendation system. Decisions made by the recommendation system can be used as a reference to determine the choice of restaurants. One method that can be used to build a recommendation system is Case Based Reasoning. The Case Based Reasoning (CBR) method mimics human ability to solve a problem or cases. The retrieval process is the most important stage, because at this stage the search for a solution for a new case is carried out. The study used the K-Nearest Neighbor method to find closeness between new cases and case bases. With the selection of features used as domains in the system, the results of recommendations presented can be more suggestive and accurate. The system successfully provides complex recommendations based on the type and type of food entered by the user. Based on blackbox testing, the system has features that can be used and function properly according to the purpose of creating the system.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhiwang Zhong ◽  
Tianhua Xu ◽  
Feng Wang ◽  
Tao Tang

In Discrete Event System, such as railway onboard system, overwhelming volume of textual data is recorded in the form of repair verbatim collected during the fault diagnosis process. Efficient text mining of such maintenance data plays an important role in discovering the best-practice repair knowledge from millions of repair verbatims, which help to conduct accurate fault diagnosis and predication. This paper presents a text case-based reasoning framework by cloud computing, which uses the diagnosis ontology for annotating fault features recorded in the repair verbatim. The extracted fault features are further reduced by rough set theory. Finally, the case retrieval is employed to search the best-practice repair actions for fixing faulty parts. By cloud computing, rough set-based attribute reduction and case retrieval are able to scale up the Big Data records and improve the efficiency of fault diagnosis and predication. The effectiveness of the proposed method is validated through a fault diagnosis of train onboard equipment.


Sign in / Sign up

Export Citation Format

Share Document