Relationship of Pacific SSTA to Summer Extreme Precipitation Events over Eastern China

Author(s):  
Jinhu Yang
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 218
Author(s):  
Changjun Wan ◽  
Changxiu Cheng ◽  
Sijing Ye ◽  
Shi Shen ◽  
Ting Zhang

Precipitation is an essential climate variable in the hydrologic cycle. Its abnormal change would have a serious impact on the social economy, ecological development and life safety. In recent decades, many studies about extreme precipitation have been performed on spatio-temporal variation patterns under global changes; little research has been conducted on the regionality and persistence, which tend to be more destructive. This study defines extreme precipitation events by percentile method, then applies the spatio-temporal scanning model (STSM) and the local spatial autocorrelation model (LSAM) to explore the spatio-temporal aggregation characteristics of extreme precipitation, taking China in July as a case. The study result showed that the STSM with the LSAM can effectively detect the spatio-temporal accumulation areas. The extreme precipitation events of China in July 2016 have a significant spatio-temporal aggregation characteristic. From the spatial perspective, China’s summer extreme precipitation spatio-temporal clusters are mainly distributed in eastern China and northern China, such as Dongting Lake plain, the Circum-Bohai Sea region, Gansu, and Xinjiang. From the temporal perspective, the spatio-temporal clusters of extreme precipitation are mainly distributed in July, and its occurrence was delayed with an increase in latitude, except for in Xinjiang, where extreme precipitation events often take place earlier and persist longer.


2015 ◽  
Vol 16 (3) ◽  
pp. 1387-1396 ◽  
Author(s):  
Chiyuan Miao ◽  
Hamed Ashouri ◽  
Kuo-Lin Hsu ◽  
Soroosh Sorooshian ◽  
Qingyun Duan

Abstract This study evaluates the performance of a newly developed daily precipitation climate data record, called Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), in capturing the behavior of daily extreme precipitation events in China during the period of 1983–2006. Different extreme precipitation indices, in the three categories of percentile, absolute threshold, and maximum indices, are studied and compared with the same indices from the East Asia (EA) ground-based gridded daily precipitation dataset. The results show that PERSIANN-CDR depicts similar precipitation behavior as the ground-based EA product in terms of capturing the spatial and temporal patterns of daily precipitation extremes, particularly in the eastern China monsoon region, where the intensity and frequency of heavy rainfall events are very high. However, the agreement between the datasets in dry regions such as the Tibetan Plateau in the west and the Taklamakan Desert in the northwest is not strong. An important factor that may have influenced the results is that the ground-based stations from which EA gridded data were produced are very sparse. In the station-rich regions in eastern China, the performance of PERSIANN-CDR is significant. PERSIANN-CDR slightly underestimates the values of extreme heavy precipitation.


Ecology ◽  
2021 ◽  
Author(s):  
Alison K. Post ◽  
Kristin P. Davis ◽  
Jillian LaRoe ◽  
David L. Hoover ◽  
Alan K. Knapp

Author(s):  
Maurizio Iannuccilli ◽  
Giorgio Bartolini ◽  
Giulio Betti ◽  
Alfonso Crisci ◽  
Daniele Grifoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document