Study on Bio-Ecological Combination Process with High Efficiency and Low Energy Consumption for Municipal Wastewater Treatment

Author(s):  
Xue-Nong Yi ◽  
Yan-Hua Fan ◽  
Chun-Feng Hu ◽  
Chen-Guang Li ◽  
Yu-Qiong Gao
Author(s):  
Li-Qiu Zhang ◽  
Xing Jiang ◽  
Hongwei Rong ◽  
Chun-Hai Wei ◽  
Min Luo ◽  
...  

As one stage process capable of simultaneous carbon and nitrogen removal, membrane aerated biofilm reactor (MABR) has advantages of low energy consumption from bubble-free aeration and no extra carbon dosage...


1987 ◽  
Vol 19 (3-4) ◽  
pp. 391-400 ◽  
Author(s):  
Zhou Ding ◽  
Cai Wei Min ◽  
Wang Qun Hui

This paper studies the use of bipolar-particles-electrodes in the decolorization of dyeing effluents. Treatment of highly colored solutions of various soluble dyes (such as direct, reactive, cationic or acid dyes) and also samples of dyeing effluents gave rise to an almost colorless transparent liquid, with removal of CODcr and BOD5 being as high as over 80%. The method is characterized by its high efficiency, low energy consumption and long performance life. A discussion of the underlying principle is given.


2019 ◽  
Vol 41 (1) ◽  
pp. 47-54
Author(s):  
Magdalena Domańska ◽  
Anna Boral ◽  
Kamila Hamal ◽  
Magdalena Kuśnierz ◽  
Janusz Łomotowski ◽  
...  

AbstractThe increasingly stringent requirements for wastewater treatment enforce the adoption of technologies that reduce pollution and minimize waste production. By combining the typical activated sludge process with membrane filtration, biological membrane reactors (MBR) offer great technological potential in this respect. The paper presents the principles and effectiveness of using an MBR at the Głogów Małopolski operation. Physicochemical tests of raw and treated wastewater as well as microscopic analyses with the use of the FISH (fluorescence in situ hybridization) method were carried out. Moreover, the level of electric energy consumption during the operation of the wastewater treatment plant and problems related to fouling were also discussed. A wastewater quality analysis confirmed the high efficiency of removing organic impurities (on average 96% in case of BOD5 and 94% in case of COD) and suspension (on average 93%).


2021 ◽  
Vol 6 (4) ◽  
pp. 244-250
Author(s):  
Serhii Protsenko ◽  
◽  
Mykola Kizyeyev ◽  
Olha Novytska ◽  
◽  
...  

The possibility of increasing the efficiency of municipal wastewater treatment plant (WWTP) operation by changing the flow diagram of biological wastewater treatment in aeration tanks at minimum expenses for their reconstruction is shown in the paper on the example of one of the regional centres of Ukraine. The technology of nitri-denitrification of wastewater according to the flow diagram of the two-stage modified Ludzak-Ettinger process is offered for the considered conditions. The distribution of wastewater flows and internal nitrate recycling between the individual stages of this flow diagram has been optimized in order to minimize the residual content of total nitrogen in the treated effluents. Computer dynamic modelling of biochemical processes has proved the high efficiency and reliability of the flow diagram proposed by the authors.


2020 ◽  
Vol 59 (37) ◽  
pp. 16437-16449
Author(s):  
Suélen Mara Gonçalves ◽  
Yanne Novais Kyriakidis ◽  
Grégori Ullmann ◽  
Marcos Antonio de Souza Barrozo ◽  
Luiz Gustavo Martins Vieira

2019 ◽  
Vol 12 (8) ◽  
pp. 2569-2580 ◽  
Author(s):  
Lu-Nan Zhang ◽  
Zhong-Ling Lang ◽  
Yong-Hui Wang ◽  
Hua-Qiao Tan ◽  
Hong-Ying Zang ◽  
...  

An efficient and durable hydrogen evolution electrocatalyst (Ru/WNO@C) in simulated chlor-alkali electrolytes illuminates the prospect of hydrogen and chlor-alkali co-production.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 475-482 ◽  
Author(s):  
C. Collivignarelli ◽  
G. Urbini ◽  
A. Farneti ◽  
A. Bassetti ◽  
U. Barbaresi

The results of pilot experiments on municipal wastewater treatment using advanced processes are described. The most important aims of this research were to achieve reductions in energy consumption, environmental impact, quantity of stabilized sludge produced, and area necessary for plant construction. The pilot plant, which was constructed in the environs of the Senigallia (AN, Italy) municipal wastewater treatment plant, had a capacity of 500 to 2500 population equivalents (p.e.). In the most attractive system, municipal wastewaters with a low organic concentration were first treated in an upflow anaerobic sludge blanket (UASB) bioreactor with a capacity of 336 m3. Part of the effluent from this process was then conveyed to an anoxic biological fluidized bed (with a volume of 8 m3 filled with 3 m3 of quartzite sand) for pre-denitrification, and then to an aerobic fixed bed (with random plastic media and a volume of 8m3) for nitrification. It was also possible to treat the municipal wastewaters using the anaerobic fluidized bed directly, after microscreening or primary sedimentation. The research undertaken was intended to verify the reliability of these processes at ambient temperatures and with variable wastewater concentrations. The preliminary results obtained for COD, BOD, and N removal from municipal wastewaters indicate that this system is quite an attractive treatment alternative, mainly due to its low sludge production and energy consumption. These results will enable accurate design criteria to be identified for the construction of more economic treatment plants on a larger scale.


2018 ◽  
Vol 77 (9) ◽  
pp. 2242-2252 ◽  
Author(s):  
M. Vaccari ◽  
P. Foladori ◽  
S. Nembrini ◽  
F. Vitali

Abstract One of the largest surveys in Europe about energy consumption in Italian wastewater treatment plants (WWTPs) is presented, based on 241 WWTPs and a total population equivalent (PE) of more than 9,000,000 PE. The study contributes towards standardised resilient data and benchmarking and to identify potentials for energy savings. In the energy benchmark, three indicators were used: specific energy consumption expressed per population equivalents (kWh PE−1 year−1), per cubic meter (kWh/m3), and per unit of chemical oxygen demand (COD) removed (kWh/kgCOD). The indicator kWh/m3, even though widely applied, resulted in a biased benchmark, because highly influenced by stormwater and infiltrations. Plants with combined networks (often used in Europe) showed an apparent better energy performance. Conversely, the indicator kWh PE−1 year−1 resulted in a more meaningful definition of a benchmark. High energy efficiency was associated with: (i) large capacity of the plant, (ii) higher COD concentration in wastewater, (iii) separate sewer systems, (iv) capacity utilisation over 80%, and (v) high organic loads, but without overloading. The 25th percentile was proposed as a benchmark for four size classes: 23 kWh PE−1 y−1 for large plants > 100,000 PE; 42 kWh PE−1 y−1 for capacity 10,000 < PE < 100,000, 48 kWh PE−1 y−1 for capacity 2,000 < PE < 10,000 and 76 kWh PE−1 y−1 for small plants < 2,000 PE.


Sign in / Sign up

Export Citation Format

Share Document