Anaerobic-Aerobic Treatment of Municipal Wastewaters with Full-Scale Upflow Anaerobic Sludge Blanket and Attached Biofilm Reactors

1990 ◽  
Vol 22 (1-2) ◽  
pp. 475-482 ◽  
Author(s):  
C. Collivignarelli ◽  
G. Urbini ◽  
A. Farneti ◽  
A. Bassetti ◽  
U. Barbaresi

The results of pilot experiments on municipal wastewater treatment using advanced processes are described. The most important aims of this research were to achieve reductions in energy consumption, environmental impact, quantity of stabilized sludge produced, and area necessary for plant construction. The pilot plant, which was constructed in the environs of the Senigallia (AN, Italy) municipal wastewater treatment plant, had a capacity of 500 to 2500 population equivalents (p.e.). In the most attractive system, municipal wastewaters with a low organic concentration were first treated in an upflow anaerobic sludge blanket (UASB) bioreactor with a capacity of 336 m3. Part of the effluent from this process was then conveyed to an anoxic biological fluidized bed (with a volume of 8 m3 filled with 3 m3 of quartzite sand) for pre-denitrification, and then to an aerobic fixed bed (with random plastic media and a volume of 8m3) for nitrification. It was also possible to treat the municipal wastewaters using the anaerobic fluidized bed directly, after microscreening or primary sedimentation. The research undertaken was intended to verify the reliability of these processes at ambient temperatures and with variable wastewater concentrations. The preliminary results obtained for COD, BOD, and N removal from municipal wastewaters indicate that this system is quite an attractive treatment alternative, mainly due to its low sludge production and energy consumption. These results will enable accurate design criteria to be identified for the construction of more economic treatment plants on a larger scale.

2020 ◽  
Author(s):  
Gede H Cahyana

Telah dikembangkan reaktor anaerob kecepatan tinggi (high rate) yang merupakan modifikasi reaktor konvensional. Di antaranya berupa (bio)reaktor pertumbuhan tersuspensi (contoh: UASB, Upflow Anaerobic Sludge Blanket) dan reaktor pertumbuhan lekat (Fixed Bed atau Biofilter, Fluidized Bed, Expanded Bed, Rotating Biodisc dan Baffled Reactor). Kedua tipe reaktor di atas memiliki sejumlah kelebihan dan kekurangan. Untuk mengoptimalkan nilai positifnya (terutama untuk keperluan desain) maka reaktor tersebut, pada penelitian ini, disusun menjadi satu urutan yang disebut Reaktor Hibrid Anaerob (Rehan) yakni UASB di bawah dan AF di atasnya. Lebih lanjut, penelitian ini diharapkan dapat memberikan informasi tentang kinerja Rehan dalam mengolah air limbah (substrat) yang konsentrasi zat organiknya (COD) sangat tinggi dan suatu model matematika yang dapat mewakili reaktor tersebut.


2017 ◽  
Vol 12 (2) ◽  
pp. 287-294 ◽  
Author(s):  
A. L. Santiago-Díaz ◽  
M. L. Salazar-Peláez

The objective of this work was to assess the performance during the start-up phase of a Upflow anaerobic sludge blanket (UASB)-septic tank for municipal wastewater treatment in Mexico City. A lab scale UASB-septic tank (62 L total volume, acrylic), consisting of three chambers treated high strength municipal wastewater at ambient temperature (16 °C–24 °C), under 72 h Hydraulic retention time (HRT) during three months. Total and soluble chemical oxygen demand (COD), total biological oxygen demand (BOD5), total solids and total suspended solids (TSS) removals were 75.2 ± 6.5%, 54.8 ± 6.7%, 64.2 ± 4.8%, 25.9 ± 5% and 82.9 ± 5%, respectively. These results are comparable with the removals reported in other works with similar arrangements; and are similar even with average removals of COD, BOD and TSS in UASB reactors installed in Latin America. The good performance obtained showed that it is possible to achieve a short start-up period with UASB-septic tank if it is inoculated with anaerobic sludge. These findings also evidenced the feasibility and reliability of the UASB-septic tank system for decentralized wastewater management in Mexico.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 115-123 ◽  
Author(s):  
E. Rother ◽  
P. Cornel

Pre-denitrification in biofilters is limited by the amount of easily degradable organic substrate, resulting in relatively high requirements for external carbon. The combination of pre-DN, N and post-DN filters is much more advisable for most municipal wastewaters, because the recycle rate can be reduced and external carbon can be saved. For minimum use of external carbon, 100–150% recycle rate should not be exceeded. Then, approximately 50–60% of the total NO3-N can be depleted in the pre-DN stage. On average, 10 g total (t) COD/g NO3-N were required in the pre-DN stage for denitrification in the pilot and full-scale plant and 0.4–0.5 kg NO3-N/(m3DN d) can be reached without external carbon. As only 40–70% of the COD load is eliminated in the pre-DN, the remaining COD load is removed in the nitrification stage. 1 kg COD/(m3 d) suppresses nitrification rates by approximately 0.1 kg NH4-N/(m3 d). For nitrification rates, >0.5 kg NH4N/(m3 d) at 12°C not more than 2 kg COD/(m3N d) may be eliminated in the nitrification.


Sign in / Sign up

Export Citation Format

Share Document