The Prediction of Remaining Useful Life (RUL) in Oil and Gas Industry using Artificial Neural Network (ANN) Algorithm

Author(s):  
Muhammad Farhan Asyraf Mohd Fauzi ◽  
Izzatdin Abdul Aziz ◽  
Afnan Amiruddin
Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7521
Author(s):  
Shaheer Ansari ◽  
Afida Ayob ◽  
Molla Shahadat Hossain Lipu ◽  
Aini Hussain ◽  
Mohamad Hanif Md Saad

Remaining useful life (RUL) is a crucial assessment indicator to evaluate battery efficiency, robustness, and accuracy by determining battery failure occurrence in electric vehicle (EV) applications. RUL prediction is necessary for timely maintenance and replacement of the battery in EVs. This paper proposes an artificial neural network (ANN) technique to predict the RUL of lithium-ion batteries under various training datasets. A multi-channel input (MCI) profile is implemented and compared with single-channel input (SCI) or single input (SI) with diverse datasets. A NASA battery dataset is utilized and systematic sampling is implemented to extract 10 sample values of voltage, current, and temperature at equal intervals from each charging cycle to reconstitute the input training profile. The experimental results demonstrate that MCI profile-based RUL prediction is highly accurate compared to SCI profile under diverse datasets. It is reported that RMSE for the proposed MCI profile-based ANN technique is 0.0819 compared to 0.5130 with SCI profile for the B0005 battery dataset. Moreover, RMSE is higher when the proposed model is trained with two datasets and one dataset, respectively. Additionally, the importance of capacity regeneration phenomena in batteries B0006 and B0018 to predict battery RUL is investigated. The results demonstrate that RMSE for the testing battery dataset B0005 is 3.7092, 3.9373 when trained with B0006, B0018, respectively, while it is 3.3678 when trained with B0007 due to the effect of capacity regeneration in B0006 and B0018 battery datasets.


2018 ◽  
Vol 4 (1) ◽  
pp. 30
Author(s):  
Yuli Andriani ◽  
Hotmalina Silitonga ◽  
Anjar Wanto

Analisis pada penelitian penting dilakukan untuk tujuan mengetahui ketepatan dan keakuratan dari penelitian itu sendiri. Begitu juga dalam prediksi volume ekspor dan impor migas di Indonesia. Dilakukannya penelitian ini untuk mengetahui seberapa besar perkembangan ekspor dan impor Indonesia di bidang migas di masa yang akan datang. Penelitian ini menggunakan Jaringan Syaraf Tiruan (JST) atau Artificial Neural Network (ANN) dengan algoritma Backpropagation. Data penelitian ini bersumber dari dokumen kepabeanan Ditjen Bea dan Cukai yaitu Pemberitahuan Ekspor Barang (PEB) dan Pemberitahuan Impor Barang (PIB). Berdasarkan data ini, variabel yang digunakan ada 7, antara lain: Tahun, ekspor minyak mentah, impor minyak mentah, ekspor hasil minyak, impor hasil minyak, ekspor gas dan impor gas. Ada 5 model arsitektur yang digunakan pada penelitian ini, 12-5-1, 12-7-1, 12-8-1, 12-10-1 dan 12-14-1. Dari ke 5 model yang digunakan, yang terbaik adalah 12-5-1 dengan menghasilkan tingkat akurasi 83%, MSE 0,0281641257 dengan tingkat error yang digunakan 0,001-0,05. Sehingga model ini bagus untuk memprediksi volume ekspor dan impor migas di Indonesia, karena akurasianya antara 80% hingga 90%.   Analysis of the research is Imporant used to know precision and accuracy of the research itself. It is also in the prediction of Volume Exports and Impors of Oil and Gas in Indonesia. This research is conducted to find out how much the development of Indonesia's exports and Impors in the field of oil and gas in the future. This research used Artificial Neural Network with Backpropagation algorithm. The data of this research have as a source from custom documents of the Directorate General of Customs and Excise (Declaration Form/PEB and Impor Export Declaration/PIB). Based on this data, there are 7 variables used, among others: Year, Crude oil exports, Crude oil Impors, Exports of oil products, Impored oil products, Gas exports and Gas Impors. There are 5 architectural models used in this study, 12-5-1, 12-7-1, 12-8-1, 12-10-1 and 12-14-1. Of the 5 models has used, the best models is 12-5-1 with an accuracy 83%, MSE 0.0281641257 with error rate 0.001-0.05. So this model is good to predict the Volume of Exports and Impors of Oil and Gas in Indonesia, because its accuracy between 80% to 90%.


2019 ◽  
Vol 120 (2) ◽  
pp. 312-328 ◽  
Author(s):  
Wei Qin ◽  
Huichun Lv ◽  
Chengliang Liu ◽  
Datta Nirmalya ◽  
Peyman Jahanshahi

Purpose With the promotion of lithium-ion battery, it is more and more important to ensure the safety usage of the battery. The purpose of this paper is to analyze the battery operation data and estimate the remaining life of the battery, and provide effective information to the user to avoid the risk of battery accidents. Design/methodology/approach The particle filter (PF) algorithm is taken as the core, and the double-exponential model is used as the state equation and the artificial neural network is used as the observation equation. After the importance resampling process, the battery degradation curve is obtained after getting the posterior parameter, and then the system could estimate remaining useful life (RUL). Findings Experiments were carried out by using the public data set. The results show that the Bayesian-based posterior estimation model has a good predictive effect and fits the degradation curve of the battery well, and the prediction accuracy will increase gradually as the cycle increases. Originality/value This paper combines the advantages of the data-driven method and PF algorithm. The proposed method has good prediction accuracy and has an uncertain expression on the RUL of the battery. Besides, the method proposed is relatively easy to implement in the battery management system, which has high practical value and can effectively avoid battery using risk for driver safety.


Sign in / Sign up

Export Citation Format

Share Document