Sequential logic to transform probabilities

Author(s):  
Naman Saraf ◽  
Kia Bazargan
Keyword(s):  
1993 ◽  
Vol 140 (6) ◽  
pp. 327-332
Author(s):  
M.-D. Shieh ◽  
C.-L. Wey ◽  
P.D. Fisher

2020 ◽  
Author(s):  
Thomas MacDonald ◽  
Timothy Schmidt ◽  
Jonathon Beves

A chemical system is proposed that is capable of amplifying small optical inputs into large changes in internal composition, based on a feedback interaction between switchable fluorescence and visible-light photoswitching. This system would demonstrate bifurcating reaction kinetics under irradiation and reach one of two stable photostationary states depending on the initial composition of the system. This behavior would allow the system to act as a chemical realization of the flip-flop circuit, the fundamental element in sequential logic and binary memory storage. We use detailed numerical modeling to demonstrate the feasibility of the proposed behavior based on known molecular phenomena, and comment on some of the conditions required to realize this system.


Author(s):  
Rajanish K. Kamat ◽  
Santhosh A. Shinde ◽  
Vinod G. Shelake

2013 ◽  
Vol 26 (3) ◽  
pp. 227-238
Author(s):  
Thomas Windbacher ◽  
Hiwa Mahmoudi ◽  
Alexander Makarov ◽  
Viktor Sverdlov ◽  
Siegfried Selberherr

We summarize our recent work on a non-volatile logic building block required for energy-efficient information processing systems. A sequential logic device, in particular, an alternative non-volatile magnetic flip-flop has been introduced. Its properties are investigated and its extension to a very dense shift register is demonstrated. We show that the flip-flop structure inherently exhibits oscillations and discuss its spin torque nano-oscillator properties.


Sign in / Sign up

Export Citation Format

Share Document