Multiplicative fault estimation using sliding mode observer with application

Author(s):  
Chen Wu
2014 ◽  
Vol 635-637 ◽  
pp. 1199-1202 ◽  
Author(s):  
Zheng Gao Hu ◽  
Guo Rong Zhao ◽  
Da Wang Zhou

For the chattering problem in the traditional sliding mode observer-based fault estimation, a second order sliding mode observer based on the Super-twisting algorithm was proposed. In order to avoid the cumbersome process of proving the stability of the Super-twisting algorithm, a Lyapunov function was adopted. An active fault tolerant control law was designed based on the fault estimation. Finally, simulation show the effectiveness of the proposed approach.


2019 ◽  
Vol 9 (24) ◽  
pp. 5404 ◽  
Author(s):  
Farzin Piltan ◽  
Alexander E. Prosvirin ◽  
Inkyu Jeong ◽  
Kichang Im ◽  
Jong-Myon Kim

Rotating machines represent a class of nonlinear, uncertain, and multiple-degrees-of-freedom systems that are used in various applications. The complexity of the system’s dynamic behavior and uncertainty result in substantial challenges for fault estimation, detection, and identification in rotating machines. To address the aforementioned challenges, this paper proposes a novel technique for fault diagnosis of a rolling-element bearing (REB), founded on a machine-learning-based advanced fuzzy sliding mode observer. First, an ARX-Laguerre algorithm is presented to model the bearing in the presence of noise and uncertainty. In addition, a fuzzy algorithm is applied to the ARX-Laguerre technique to increase the system’s modeling accuracy. Next, the conventional sliding mode observer is applied to resolve the problems of fault estimation in a complex system with a high degree of uncertainty, such as rotating machinery. To address the problem of chattering that is inherent in the conventional sliding mode observer, the higher-order super-twisting (advanced) technique is introduced in this study. In addition, the fuzzy method is applied to the advanced sliding mode observer to improve the accuracy of fault estimation in uncertain conditions. As a result, the advanced fuzzy sliding mode observer adaptively improves the reliability, robustness, and estimation accuracy of rolling-element bearing fault estimation. Then, the residual signal delivered by the proposed methodology is split in the windows and each window is characterized by a numerical parameter. Finally, a machine learning technique, called a decision tree, adaptively derives the threshold values that are used for problems of fault detection and fault identification in this study. The effectiveness of the proposed algorithm is validated using a publicly available vibration dataset of Case Western Reverse University. The experimental results show that the machine learning-based advanced fuzzy sliding mode observation methodology significantly improves the reliability and accuracy of the fault estimation, detection, and identification of rolling element bearing faults under variable crack sizes and load conditions.


2020 ◽  
pp. 107754632092627
Author(s):  
Seyedeh Hamideh Sedigh Ziyabari ◽  
Mahdi Aliyari Shoorehdeli ◽  
Madjid Karimirad

In this article, a novel robust fault estimation scheme to ensure efficient and reliable operation of wind turbines has been presented. Wind turbines are complex systems with large flexible structures that work under very turbulent and unpredictable environmental conditions for a variable electrical grid. The proposed observer-based estimation scheme consists of a set of possible faults affecting the dynamics, sensors, and actuators of wind turbines. First, the pitch and drivetrain system faults occur simultaneously with process and sensor disturbances that are called unknown input signals. Second, through a series of coordinate transformations, the faulty subsystem is decoupled from the rest of the system. The first subsystem is affected by unknown inputs, and the second one is affected by faults. A reduced-order unknown input observer is designed to reconstruct states accurately, whereas a reduced-order sliding mode observer is designed for the second subsystem such that it is robust against unknown inputs and faults. Moreover, the reduced-order unknown input observer guarantees the asymptotic stability of the error dynamics using the Lyapunov theory method and completely removes unknown inputs; on the other hand, the reduced-order sliding mode observer is designed to reconstruct faults for the faulty subsystem accurately. Until now, authors only focused on an unknown input signal in the dynamics of the system, especially in nonlinear systems. The estimated fault will be adequate to accommodate the control loop, and sufficient conditions are developed to guarantee the stability of the state estimation error. In the next step, to figure the effectiveness of the proposed approach, a wind turbine benchmark system model is considered with faults and unknown inputs scenarios. The simulation results are used to validate the robustness of the proposed algorithms under noise conditions, and the results show that the algorithm could classify faults robustly.


Sign in / Sign up

Export Citation Format

Share Document