Multi-axis Toolpath Planning for Extrusion-Based Polymer 3D Printing: Review and Prospective

Author(s):  
Han Zhang ◽  
Tong Liu ◽  
Lu Lu ◽  
Xiling Yao ◽  
Shaoying Li ◽  
...  
2021 ◽  
Vol 11 (11) ◽  
pp. 4825
Author(s):  
Yuan Yao ◽  
Yichi Zhang ◽  
Mohamed Aburaia ◽  
Maximilian Lackner

Conventional Fused Filament Fabrication (FFF) equipment can only deposit materials in a single direction, limiting the strength of printed products. Robotic 3D printing provides more degrees of freedom (DOF) to control the material deposition and has become a trend in additive manufacturing. However, there is little discussion on the strength effect of multi-DOF printing. This paper presents an efficient process framework for multi-axis 3D printing based on the robot to improve the strength. A multi-DOF continuous toolpath planning method is designed to promote the printed part’s strength and surface quality. We generate curve layers along the model surfaces and fill Fermat spiral in the layers. The method makes it possible to take full advantage of the multi-axis robot arm to achieve smooth printing on surfaces with high curvature and avoid the staircase effect and collision in the process. To further improve print quality, a control strategy is provided to synchronize the material extrusion and robot arm movement. Experiments show that the tensile strength increases by 22–167% compared with the conventional flat slicing method for curved-surface parts. The surface quality is improved by eliminating the staircase effect. The continuous toolpath planning also supports continuous fiber-reinforced printing without a cutting device. Finally, we compared with other multi-DOF printing, the application scenarios, and limitations are given.


Nature ◽  
2013 ◽  
Vol 494 (7436) ◽  
pp. 174-174 ◽  
Author(s):  
Michael Pawlyn
Keyword(s):  

Nature ◽  
2020 ◽  
Vol 588 (7839) ◽  
pp. 594-595
Author(s):  
Cameron Darkes-Burkey ◽  
Robert F. Shepherd
Keyword(s):  

Author(s):  
Thomas Birtchnell ◽  
William Hoyle
Keyword(s):  

2018 ◽  
Vol 4 (2) ◽  
pp. 85-90
Author(s):  
Y. M. Dovydenko ◽  
N. A. Ivanova ◽  
S. A. Chizhik ◽  
V. E. Agabekov

2018 ◽  
Vol 2018 (1) ◽  
pp. 24-28 ◽  
Author(s):  
V.M. Nesterenkov ◽  
◽  
V.A. Matvejchuk ◽  
M.O. Rusynik ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document