Polyimide powder for 3D-printing by method of selective laser sintering

2018 ◽  
Vol 4 (3) ◽  
pp. 5-5
Author(s):  
V. E. Yudin ◽  
G. V. Vaganov
2021 ◽  
Vol 412 ◽  
pp. 128675
Author(s):  
Shaojie Sun ◽  
Guoxia Fei ◽  
Xiaorong Wang ◽  
Miao Xie ◽  
Quanfen Guo ◽  
...  

ACS Omega ◽  
2019 ◽  
Vol 4 (7) ◽  
pp. 12012-12017 ◽  
Author(s):  
Elmeri Lahtinen ◽  
Lotta Turunen ◽  
Mikko M. Hänninen ◽  
Kalle Kolari ◽  
Heikki M. Tuononen ◽  
...  

2008 ◽  
Vol 36 (8) ◽  
pp. 443-449 ◽  
Author(s):  
Daniela Nascimento Silva ◽  
Marília Gerhardt de Oliveira ◽  
Eduardo Meurer ◽  
Maria Inês Meurer ◽  
Jorge Vicente Lopes da Silva ◽  
...  

2021 ◽  
Vol 11 (18) ◽  
pp. 8778
Author(s):  
Antoniya Toncheva ◽  
Loïc Brison ◽  
Philippe Dubois ◽  
Fouad Laoutid

Natural and synthetic rubber is gaining increased interest in various industrial applications and daily life sectors (automotive industry, acoustic and electrical isolators, adhesives, impermeable surfaces, and others) due to its remarkable physicomechanical properties, excellent durability, and abrasive resistance. These great characteristics are accompanied by some recycling difficulties of the final products, particularly originated from the tire waste rubber industry. In this study, recycled tire rubber was incorporated in polymer matrices using selective laser sintering as 3D printing technology. Two polymers were used-polyamide and thermoplastic polyurethane, for their rigid and elastomeric properties, respectively. Polymer composites containing various tire powder amounts, up to 40 wt.%, were prepared by physical blending. The final materials’ morphological characteristics, mechanical properties, and thermal stability were evaluated. The proposed ambitious additive manufacturing approach looked over also some of the major aspects to be considered during the 3D printing procedure. In addition, examples of printed prototypes with potential applications were also proposed revealing the potential of the recycled tire rubber-loaded composites.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3101
Author(s):  
Abishek Kafle ◽  
Eric Luis ◽  
Raman Silwal ◽  
Houwen Matthew Pan ◽  
Pratisthit Lal Shrestha ◽  
...  

Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three different early adopted, however, widely used, polymer-based 3D printing processes; fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create polymeric parts. The main aim of this review is to offer a comparative overview by correlating polymer material-process-properties for three different 3D printing techniques. Moreover, the advanced material-process requirements towards 4D printing via these print methods taking an example of magneto-active polymers is covered. Overall, this review highlights different aspects of these printing methods and serves as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications and also discusses the implementation practices towards 4D printing of polymer-based systems with a current state-of-the-art approach.


Sign in / Sign up

Export Citation Format

Share Document