Adaptive fuzzy nonlinear anti-sway trajectory tracking control of uncertain overhead cranes with high-speed load hoisting motion

Author(s):  
Mun-Soo Park ◽  
Dongkyoung Chwa ◽  
Suk-Kyo Hong
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Sanxiu Wang

In response to the issue of the trajectory tracking control problem of manipulators with uncertain parameters and external disturbance, an adaptive fuzzy sliding mode robust control algorithm is proposed. Sliding mode control (SMC) is adopted to perform robotic manipulator trajectory tracking control. Then, a fuzzy logic system is used for adaptive adjustment of switching gain of the SMC and to reduce the buffeting problem. Next, compensation is made by using the robust controller in consideration of the impacts of unmodeled dynamics and external disturbance. The simulation experiment on a two axes robotic manipulator shows that, with the proposed control method, the sliding mode control input signal is kept smooth, and the manipulator has high trajectory tracking precision.


2018 ◽  
Vol 17 (1) ◽  
pp. 28-33
Author(s):  
Ang Oon Thay ◽  
Mohd Ariffanan Mohd Basri ◽  
Nurul Adilla Mohd Subha ◽  
Mohamad Amir Shamsudin ◽  
Shafishuhaza Sahlan

Trajectory tracking control is an important issue in the field of autonomous mobile robot. In high speed and heavy load applications, the dynamic of autonomous mobile robot plays an important factor in allowing the robot to follow the desired trajectory path. However, the parameters attribute to robot dynamic are difficult to model and highly uncertain. One of the uncertainty factors is the load variation which changes the dynamic parameters of autonomous mobile robot. Meanwhile, Sliding Mode Control (SMC) is well known for its robustness against model uncertainties and disturbances. This paper is about design of dynamic controller based on SMC technique for trajectory tracking control of autonomous mobile robot system. The model of mobile robot is developed based on Pioneer 3-DX mobile robot. The trajectory tracking controller is divided into two parts, kinematic controller and dynamic controller. Stability of both dynamic and kinematic controller is verified using Lyapunov stability theory. The performance of trajectory tracking control for proposed dynamic controller based on SMC technique is compared against dynamic controller based on Proportional-Integral-Derivative (PID) technique with and without the presence of dynamic uncertainties. Simulation results show proposed dynamic controller based on SMC technique give better performance in trajectory tracking control in comparison to PID.


Sign in / Sign up

Export Citation Format

Share Document