Variable Step Size Adaptive Control for Solar PV-Diesel Generated Based Standalone System

Author(s):  
G. K. Taneja ◽  
Gaurav Modi ◽  
Bhim Singh ◽  
Ashu Verma
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 371 ◽  
Author(s):  
CH Hussaian Basha ◽  
C Rani

Solar photovoltaic (PV) systems are attracting a huge focus in the current energy scenario. Various maximum power point tracking (MPPT) methods are used in solar PV systems in order to achieve maximum power. In this article, a clear analysis of conventional MPPT techniques such as variable step size perturb and observe (VSS-P&O), modified incremental conductance (MIC), fractional open circuit voltage (FOCV) has been carried out. In addition, the soft computing MPPT techniques such as fixed step size radial basis functional algorithm (FSS-RBFA), variable step size radial basis functional algorithm (VSS-RBFA), adaptive fuzzy logic controller (AFLC), particle swarm optimization (PSO), and cuckoo search (CS) MPPT techniques are presented along with their comparative analysis. The comparative analysis is done under static and dynamic irradiation conditions by considering algorithm complexity, tracking speed, oscillations at MPP, and sensing parameters. The single-diode model PV panel and double-diode model PV panel are also compared in terms of fill factor (FF) and maximum power extraction. Clear insight is presented supporting the suitability of MPPT techniques for different types of converter configurations.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. Arulmurugan ◽  
N. Suthanthiravanitha

Nowadays a hot topic among the research community is the harnessing energy from the free sunlight which is abundant and pollution-free. The availability of cheap solar photovoltaic (PV) modules has to harvest solar energy with better efficiency. The nature of solar modules is nonlinear and therefore the proper impedance matching is essential. The proper impedance matching ensures the extraction of the maximum power from solar PV module. Maximum power point tracking (MPPT) algorithm is acting as a significant part in solar power generating system because it varies in the output power from a PV generating set for various climatic conditions. This paper suggested a new improved work for MPPT of PV energy system by using the optimized novel improved fractional order variable step size (FOVSS) incremental conductance (Inc-Cond) algorithm. The new proposed controller combines the merits of both improved fractional order (FO) and variable step size (VSS) Inc-Cond which is well suitable for design control and execution. The suggested controller results in attaining the desired transient reaction under changing operating points. MATLAB simulation effort shows MPPT controller and a DC to DC Luo converter feeding a battery load is achieved. The laboratory experimental results demonstrate that the new proposed MPPT controller in the photovoltaic generating system is valid.


2018 ◽  
Vol 22 (1) ◽  
pp. 19 ◽  
Author(s):  
Deepthi Pilakkat ◽  
S. Kanthalakshmi

The characteristic of a Photovoltaic (PV) panel is most affected by the incident solar insolation temperature, shading, and array configuration. Maximum power point tracking (MPPT) algorithms have an important role in harvesting maximum power from the solar PV arrays. Among the various MPPT methods Perturb and Observe (P&O) algorithm is the simple and efficient one. However, there will be a drift problem in case of increase in insolation. This drift will be more under rapid increase in insolation. To improve the speed of tracking the Maximum Power Point (MPP), a variable step size P&O (VSSPO) is developed. The drift problem will be more in the case of VSSPO as it will have a larger step size for an increase in insolation. In this paper, the maximum output power extraction from Solar PV under rapidly increasing insolation conditions by a drift free P&O (DFP&O) as well as drift free VSSPO (DFVSSPO) method is presented.


Author(s):  
Alberto Carini ◽  
Markus V. S. Lima ◽  
Hamed Yazdanpanah ◽  
Simone Orcioni ◽  
Stefania Cecchi

2019 ◽  
Vol 67 (6) ◽  
pp. 405-414 ◽  
Author(s):  
Ningning Liu ◽  
Yuedong Sun ◽  
Yansong Wang ◽  
Hui Guo ◽  
Bin Gao ◽  
...  

Active noise control (ANC) is used to reduce undesirable noise, particularly at low frequencies. There are many algorithms based on the least mean square (LMS) algorithm, such as the filtered-x LMS (FxLMS) algorithm, which have been widely used for ANC systems. However, the LMS algorithm cannot balance convergence speed and steady-state error due to the fixed step size and tap length. Accordingly, in this article, two improved LMS algorithms, namely, the iterative variable step-size LMS (IVS-LMS) and the variable tap-length LMS (VT-LMS), are proposed for active vehicle interior noise control. The interior noises of a sample vehicle are measured and thereby their frequency characteristics. Results show that the sound energy of noise is concentrated within a low-frequency range below 1000 Hz. The classical LMS, IVS-LMS and VT-LMS algorithms are applied to the measured noise signals. Results further suggest that the IVS-LMS and VT-LMS algorithms can better improve algorithmic performance for convergence speed and steady-state error compared with the classical LMS. The proposed algorithms could potentially be incorporated into other LMS-based algorithms (like the FxLMS) used in ANC systems for improving the ride comfort of a vehicle.


Sign in / Sign up

Export Citation Format

Share Document