scholarly journals Improved Fractional Order VSS Inc-Cond MPPT Algorithm for Photovoltaic Scheme

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. Arulmurugan ◽  
N. Suthanthiravanitha

Nowadays a hot topic among the research community is the harnessing energy from the free sunlight which is abundant and pollution-free. The availability of cheap solar photovoltaic (PV) modules has to harvest solar energy with better efficiency. The nature of solar modules is nonlinear and therefore the proper impedance matching is essential. The proper impedance matching ensures the extraction of the maximum power from solar PV module. Maximum power point tracking (MPPT) algorithm is acting as a significant part in solar power generating system because it varies in the output power from a PV generating set for various climatic conditions. This paper suggested a new improved work for MPPT of PV energy system by using the optimized novel improved fractional order variable step size (FOVSS) incremental conductance (Inc-Cond) algorithm. The new proposed controller combines the merits of both improved fractional order (FO) and variable step size (VSS) Inc-Cond which is well suitable for design control and execution. The suggested controller results in attaining the desired transient reaction under changing operating points. MATLAB simulation effort shows MPPT controller and a DC to DC Luo converter feeding a battery load is achieved. The laboratory experimental results demonstrate that the new proposed MPPT controller in the photovoltaic generating system is valid.

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 371 ◽  
Author(s):  
CH Hussaian Basha ◽  
C Rani

Solar photovoltaic (PV) systems are attracting a huge focus in the current energy scenario. Various maximum power point tracking (MPPT) methods are used in solar PV systems in order to achieve maximum power. In this article, a clear analysis of conventional MPPT techniques such as variable step size perturb and observe (VSS-P&O), modified incremental conductance (MIC), fractional open circuit voltage (FOCV) has been carried out. In addition, the soft computing MPPT techniques such as fixed step size radial basis functional algorithm (FSS-RBFA), variable step size radial basis functional algorithm (VSS-RBFA), adaptive fuzzy logic controller (AFLC), particle swarm optimization (PSO), and cuckoo search (CS) MPPT techniques are presented along with their comparative analysis. The comparative analysis is done under static and dynamic irradiation conditions by considering algorithm complexity, tracking speed, oscillations at MPP, and sensing parameters. The single-diode model PV panel and double-diode model PV panel are also compared in terms of fill factor (FF) and maximum power extraction. Clear insight is presented supporting the suitability of MPPT techniques for different types of converter configurations.


2018 ◽  
Vol 22 (1) ◽  
pp. 19 ◽  
Author(s):  
Deepthi Pilakkat ◽  
S. Kanthalakshmi

The characteristic of a Photovoltaic (PV) panel is most affected by the incident solar insolation temperature, shading, and array configuration. Maximum power point tracking (MPPT) algorithms have an important role in harvesting maximum power from the solar PV arrays. Among the various MPPT methods Perturb and Observe (P&O) algorithm is the simple and efficient one. However, there will be a drift problem in case of increase in insolation. This drift will be more under rapid increase in insolation. To improve the speed of tracking the Maximum Power Point (MPP), a variable step size P&O (VSSPO) is developed. The drift problem will be more in the case of VSSPO as it will have a larger step size for an increase in insolation. In this paper, the maximum output power extraction from Solar PV under rapidly increasing insolation conditions by a drift free P&O (DFP&O) as well as drift free VSSPO (DFVSSPO) method is presented.


2013 ◽  
Vol 694-697 ◽  
pp. 2933-2937
Author(s):  
Ji Ying Shi ◽  
Zi Man Wang

In order to improve the performance of photovoltaic generating system, an improved interleaved boost converter was used as Maximum Power Point Tracker (MPPT) to match the power with the load. Compared with the traditional boost converter, the advantage of improved interleaved boost converter is high step-up ratio, low input ripple current and improved reliability. Based on this topology, the MPPT control strategy of variable step size perturbation and observation (P&O) method is adopted, photovoltaic array can track the maximum power point by adjusting PWM duty ratio of the boost converter. The simulation results certify the correctness of theoretical analysis.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4668 ◽  
Author(s):  
Maissa Farhat ◽  
Oscar Barambones ◽  
Lassaâd Sbita

This paper presents a complete study of a standalone photovoltaic (PV) system including a maximum power tracker (MPPT) driving a DC boost converter to feed a resistive load. Here, a new MPPT approach using a modification on the original perturb and observe (P&O) algorithm is proposed; the improved algorithm is founded on a variable step size (VSZ). This novel algorithm is realized and efficiently implemented in the PV system. The proposed VSZ algorithm is compared both in simulation and in real time to the P&O algorithm. The stability analysis for the VSZ algorithm is performed using Lyapunov’s stability theory. In this paper, a detailed study and explanation of the modified P&O MPPT controller is presented to ensure high PV system performance. The proposed algorithm is practically implemented using a DSP1104 for real-time testing. Significant results are achieved, proving the validity of the proposed PV system control scheme. The obtained results show that the proposed VSZ succeeds at harvesting the maximum power point (MPP), as the amount of harvested power using VSZ is three times greater than the power extracted without the tracking algorithm. The VSZ reveals improved performance compared to the conventional P&O algorithm in term of dynamic response, signal quality and stability.


2020 ◽  
Vol 12 (14) ◽  
pp. 5601 ◽  
Author(s):  
Hegazy Rezk ◽  
Ahmed Fathy

The output power of a fuel cell mainly depends on the operating conditions such as cell temperature and membrane water content. The fuel cell (FC) power versus FC current graph has a unique maximum power point (MPP). The location of the MPP is variable, depending on the operating condition. Consequently, a maximum power point tracker (MPPT) is highly required to ensure that the fuel cell operates at an MPP to increase its performance. In this research work, a variable step-size incremental resistance (VSS-INR) tracking method was suggested to track the MPP of the proton exchange membrane (PEMFC). Most of MPPT methods used with PEMFC require at least three sensors: temperature sensor, water content sensor, and voltage sensor. However, the proposed VSS-INR needs only two sensors: voltage and current sensors. The step size of the VSS-INR is directly proportional to the error signal. Therefore, the step size will become small as the error becomes very small nearby the maximum power point. Accordingly, the accuracy of the VSS-INR tracking method is high in a steady state. To test and validate the VSS-INR, nine different scenarios of operating conditions, including normal operation, only temperature variation, only variation of water content in the membrane, and both variations of temperature and water content simultaneously, were used. The obtained results were compared with previously proposed methods, including particle swarm optimization (PSO), perturb and observe (P&O), and sliding mode (SM), under different operating conditions. The results of the comparison confirmed the superiority of VSS-INR compared with other methods in terms of the tracking efficiency and steady-state fluctuations.


Sign in / Sign up

Export Citation Format

Share Document