Dynamically Reconfigurable Architecture for Fault-Tolerant 2D Networks-on-Chip

Author(s):  
Poona Bahrebar ◽  
Azarakhsh Jalalvand ◽  
Dirk Stroobandt
2016 ◽  
Vol E99.C (7) ◽  
pp. 866-877 ◽  
Author(s):  
Abdulfattah M. OBEID ◽  
Syed Manzoor QASIM ◽  
Mohammed S. BENSALEH ◽  
Abdullah A. ALJUFFRI

Author(s):  
Mário P. Véstias ◽  
Horácio C. Neto

The recent advances in IC technology have made it possible to implement systems with dozens or even hundreds of cores in a single chip. With such a large number of cores communicating with each other there is a strong pressure over the communication infrastructure to deliver high bandwidth, low latency, low power consumption and quality of service to guarantee real-time functionality. Networks-on-Chip are definitely becoming the only acceptable interconnection structure for today’s multiprocessor systems-on-chip (MPSoC). The first generation of NoC solutions considers a regular topology, typically a 2D mesh. Routers and network interfaces are mainly homogeneous so that they can be easily scaled up and modular design is facilitated. All advantages of a NoC infrastructure were proved with this first generation of NoC solutions. However, NoCs have a relative area and speed overhead. Application specific systems can benefit from heterogeneous communication infrastructures providing high bandwidth in a localized fashion where it is needed with improved area. The efficiency of both homogeneous and heterogeneous solutions can be improved if runtime changes are considered. Dynamically or runtime reconfigurable NoCs are the second generation of NoCs since they represent a new set of benefits in terms of area overhead, performance, power consumption, fault tolerance and quality of service compared to the previous generation where the architecture is decided at design time. This chapter discusses the static and runtime customization of routers and presents results with networks-on-chip with static and adaptive routers. Runtime adaptive techniques are analyzed and compared to each other in terms of area occupation and performance. The results and the discussion presented in this chapter show that dynamically adaptive routers are fundamental in the design of NoCs to satisfy the requirements of today’s systems-on-chip.


Sign in / Sign up

Export Citation Format

Share Document