Segmentation of White Blood Cells using Image Segmentation Algorithms

Author(s):  
Puranam Revanth Kumar ◽  
Achyuth Sarkar ◽  
Sachi Nandan Mohanty ◽  
P Pavan Kumar
2021 ◽  
Vol 4 (2) ◽  
pp. 101
Author(s):  
Nurcahya Pradana Taufik Prakisya ◽  
Andika Setiawan

Various types of algorithms have been widely used for image segmentation in digital image processing. Every algorithm has features that make it unique to be applied to specific cases. One of the applications of image segmentation is to detect white blood cells. Certain objects such as blood cells must be able to be well segmented because their existence is very crucial to support the accuracy of disease detection related to haematology or the branch of medical science that studies the morphology of blood and blood-forming tissues. Three image segmentation algorithms were compared through this study: Seed Region Growing, Otsu Thresholding and Active Contour Without Edge. Comparative analysis of the three algorithms was done by counting the number of white blood cell objects that were successfully segmented with the actual number of cells that were counted manually. A total of 30 images of blood smears were taken from people suffering from acute myeloid leukemia M1. The average accuracy values from each algorithm were used to determine which image segmentation algorithm is the most suitable for application in the case of white blood cells segmentation. The results showed that Active Contour Without Edge is the most appropriate among the other algorithms


2019 ◽  
Vol 10 (3) ◽  
pp. 2409-2416 ◽  
Author(s):  
Meghana M.R ◽  
Akshatha Prabhu

Leukemia is a blood cancer which features through the ejection of manipulated and strange fabrication of white blood cells which is the way of bone marrow within the blood. The project aims at designing and developing an efficient technique for the detection of luekemia based on image segmentation techniques and nuclei analysis which incorporates the affected percentage and are compared and classified using KNN and SVM. The DNA of youngster cells, for the maximum detail white platelets, subsequently finally ends up harmed here and there. This version from the norm reasons platelets to increase and separate constantly. Sound platelets bypass on inevitably and are supplanted by approach of new cells, which might be brought in bone marrow. 


2015 ◽  
Vol 77 (6) ◽  
Author(s):  
Laghouiter Oussama ◽  
M. Mahadi Abdul Jamil ◽  
Wan Mahani Hafiza Bt. Wan Mahmud

Image processing technique applies in different domains, such as medical, remote sensing and security. This techniques Aims to get a simple image called -image processed- should retain maximum useful information. The sensitive step in image processing is segmentation of image. Segmentation is first stage in medical image analysis seeded to two categories supervised and unsupervised technique. Accuracy of this stage affects the whole system performance. This paper present some methods applied for blood cell image segmentation and compares previous studies of overlapping cell division method. The common goal about this area is accuracy of counting the number of red blood cells (RBC) or white blood cells (WBC), which decrease with effect of some diseases such as anemia and leukemia. And makes it a critical factor in patient treatments.


Author(s):  
Qanita Bani Baker ◽  
Mohammad A. Alsmirat ◽  
Khaled Balhaf ◽  
Mohammed A. Shehab

Author(s):  
Delma P. Thomas ◽  
Dianne E. Godar

Ultraviolet radiation (UVR) from all three waveband regions of the UV spectrum, UVA (320-400 nm), UVB (290-320 nm), and UVC (200-290 nm), can be emitted by some medical devices and consumer products. Sunlamps can expose the blood to a considerable amount of UVR, particularly UVA and/or UVB. The percent transmission of each waveband through the epidermis to the dermis, which contains blood, increases in the order of increasing wavelength: UVC (10%) < UVB (20%) < UVA (30%). To investigate the effects of UVR on white blood cells, we chose transmission electron microscopy to examine the ultrastructure changes in L5178Y-R murine lymphoma cells.


1990 ◽  
Vol 63 (01) ◽  
pp. 112-121 ◽  
Author(s):  
David N Bell ◽  
Samira Spain ◽  
Harry L Goldsmith

SummaryThe effect of red blood cells, rbc, and shear rate on the ADPinduced aggregation of platelets in whole blood, WB, flowing through polyethylene tubing was studied using a previously described technique (1). Effluent WB was collected into 0.5% glutaraldehyde and the red blood cells removed by centrifugation through Percoll. At 23°C the rate of single platelet aggregtion was upt to 9× greater in WB than previously found in platelet-rich plasma (2) at mean tube shear rates Ḡ = 41.9,335, and 1,920 s−1, and at both 0.2 and 1.0 µM ADP. At 0.2 pM ADP, the rate of aggregation was greatest at Ḡ = 41.9 s−1 over the first 1.7 s mean transit time through the flow tube, t, but decreased steadily with time. At Ḡ ≥335 s−1 the rate of aggregation increased between t = 1.7 and 8.6 s; however, aggregate size decreased with increasing shear rate. At 1.0 µM ADP, the initial rate of single platelet aggregation was still highest at Ḡ = 41.9 s1 where large aggregates up to several millimeters in diameter containing rbc formed by t = 43 s. At this ADP concentration, aggregate size was still limited at Ḡ ≥335 s−1 but the rate of single platelet aggregation was markedly greater than at 0.2 pM ADP. By t = 43 s, no single platelets remained and rbc were not incorporated into aggregates. Although aggregate size increased slowly, large aggregates eventually formed. White blood cells were not significantly incorporated into aggregates at any shear rate or ADP concentration. Since the present technique did not induce platelet thromboxane A2 formation or cause cell lysis, these experiments provide evidence for a purely mechanical effect of rbc in augmenting platelet aggregation in WB.


2013 ◽  
Author(s):  
Olga Papalou ◽  
Sarantis Livadas ◽  
Athanasios Karachalios ◽  
Nektarios Benetatos ◽  
George Boutzios ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document