A Control Method of AC Induction Motor Based on CMAC and Single Neuron PID Controller

Author(s):  
Zhenyu He
2013 ◽  
Vol 394 ◽  
pp. 398-403
Author(s):  
Chang Lin Ma ◽  
Lin Hao ◽  
Feng Li

The single neutron adaptive PID controller is applied to the angular velocity tracking control of the hydraulic lifting system. The angle velocity tracking control strategy of the lifting process is proposed, and the lifting angle velocity is designed based on the sine acceleration function, and the lifting angle velocity dynamic programming based on the real-time angle is proposed. The single neutron adaptive PID control method is studied, and in order to improve its performance, a method utilizing genetic algorithm to optimize these parameters of single neuron PID controller is presented. The control algorithm is applied to the large mechanical lifting process successfully, and the simulation results show that the control performance of the Adaptive PSD Controller is more effective.


2010 ◽  
Vol 139-141 ◽  
pp. 1945-1949
Author(s):  
Tian Pei Zhou ◽  
Wen Fang Huang

In the process of recycling chemical product in coking object, ammonia and tar were indispensable both metallurgy and agriculture, so the control of separation process for tar-ammonia was one of the most important control problems. Due to the density difference between the tar and ammonia was greater, easier to separate, the control method based on PID was used in field at present. But the control effect of traditional PID was not good because of environment change and fluctuation in material composition. Separation process for tar-ammonia was analyzed firstly, in view of the shortcoming of traditional PID control algorithm, single neuron PID control algorithm based on variable scale method was adopted through using optimization method. Detailed algorithm steps were designed and applied to tar-ammonia separation system. Simulation results show that by comparison with traditional PID algorithm, the algorithm have the following advantages: faster learning speed, shorter adjusted time and good convergence performance.


1970 ◽  
Vol 5 (1.) ◽  
Author(s):  
Aram Nasser ◽  
Péter Tamás Szemes

This paper presents the speed control of a three-phase induction motor using the scalar control method with PID controller. The system maintains a constant volt to frequency ratio for any change in the load. We also used vector control method and bond graph to describe the motor model, as well as its behavior. Finally, we simulated the system using Labview, where the good results of using the scalar control technique are shown.


Author(s):  
Xiaoyuan Wang ◽  
Tao Fu ◽  
Xiaoguang Wang

Brushless DC (BLDC) motors are widely used for many industrial applications because of their high efficiency, high torque and low volume. In view of the problem that the current control method of speed regulation system of BLDC motor has poor control effect caused by fixed parameters of PID controller, an adaptive PID algorithm with quadratic single neuron (QSN) was designed. Quadratic performance index was introduced in adjustment of weight coefficients; expected optimization effect was gotten by calculating control law. QSN adaptive PID controller can change its parameters online when operating conditions are changed, it can also change its control characteristic automatically. Matlab simulations and experiment results showed that the proposed approach has less overshoot, faster response, stronger ability of anti-disturbance, the results also showed more effectiveness and efficiency than the conventional PID model in motor speed control.


Sign in / Sign up

Export Citation Format

Share Document