Active switched quasi-Z-source inverter with high-boost ability for low-voltage renewable energy sources

Author(s):  
Anh-Vu Ho ◽  
Tae-Won Chun ◽  
Hong-Hee Lee ◽  
Heung-Geun Kim
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2151
Author(s):  
Feras Alasali ◽  
Husam Foudeh ◽  
Esraa Mousa Ali ◽  
Khaled Nusair ◽  
William Holderbaum

More and more households are using renewable energy sources, and this will continue as the world moves towards a clean energy future and new patterns in demands for electricity. This creates significant novel challenges for Distribution Network Operators (DNOs) such as volatile net demand behavior and predicting Low Voltage (LV) demand. There is a lack of understanding of modern LV networks’ demand and renewable energy sources behavior. This article starts with an investigation into the unique characteristics of householder demand behavior in Jordan, connected to Photovoltaics (PV) systems. Previous studies have focused mostly on forecasting LV level demand without considering renewable energy sources, disaggregation demand and the weather conditions at the LV level. In this study, we provide detailed LV demand analysis and a variety of forecasting methods in terms of a probabilistic, new optimization learning algorithm called the Golden Ratio Optimization Method (GROM) for an Artificial Neural Network (ANN) model for rolling and point forecasting. Short-term forecasting models have been designed and developed to generate future scenarios for different disaggregation demand levels from households, small cities, net demands and PV system output. The results show that the volatile behavior of LV networks connected to the PV system creates substantial forecasting challenges. The mean absolute percentage error (MAPE) for the ANN-GROM model improved by 41.2% for household demand forecast compared to the traditional ANN model.


2017 ◽  
Vol 30 (2) ◽  
pp. 145-160
Author(s):  
Augustine Egwebe ◽  
Meghdad Fazeli ◽  
Petar Igic ◽  
Paul Holland

This paper explores and discusses various design considerations for inverter-based systems. Different load sharing techniques are presented for the integration of renewable energy sources within islanded microgrids. In off-grid connection, renewable energy sources are often configured to share power based on their rated capacity. This paper explores both conventional and dynamic load sharing interaction between distributed generation units, both in an inductive (high voltage) and resistive (low voltage) networks. Load sharing based on the proper design of virtual impedance is also reviewed.


Author(s):  
Dimosthenis Verginadis ◽  
Athanasios Karlis

Background: The scope of this paper is to study the energy trading in microgrids. Microgrids are low voltage or medium voltage distribution networks, which consist of energy storage systems, electric loads, e.g. electric vehicles and Renewable Energy Sources (RES). Methods: Legacy energy grids are being transformed by the introduction of small to medium sized individual or cooperative, mostly RES invested energy producers and prosumers. Electric vehicles penetrate the market and modern power grids integrate them as ancillary services providers when there are peak domestic loads, as well as in order to balance grid voltage aiming to increase system reliability, compensating for renewable energy sources’ intermittency and volatility in energy production. Results: An elaborate management algorithm is proposed in this paper, to balance demand and local renewable energy sources microgrid supply. Conclusion: Finally, the results of simulations of different scenarios, including economic parameters and proposals for future research are presented.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5516
Author(s):  
Filip Relić ◽  
Predrag Marić ◽  
Hrvoje Glavaš ◽  
Ivica Petrović

In the modern power system, Flexible Alternating Current Transmission System (FACTS) devices are widely used. An increased share of the distributed generation (DG) and the development of microgrids change the power flows in the existing distribution networks as well as a conventional power flow direction from the transmission to the distribution network level which may affect the overall stability aspects. The paper shows the FACTS devices’ implementation influence on the performance of the distribution network with integrated renewable energy sources (RES) observing the aspects of the oscillatory stability and the low-voltage motor starting. The FACTS devices, in particular the static var compensators (SVC), have been allocated according to a novel algorithm proposed in the paper. The algorithm uses an iterative process to determine an optimal location for implementation and rating power of SVC considering active power losses minimization, improvement of the voltage profile and maximizing return of investment (ROI) of FACTS devices. Novel constraints—transformer station construction constraint, SVC industrial nominal power value constraint and the constraint of distribution system operator (DSO) economic willingness to investment in the distribution network development are considered in the proposed algorithm. The analysis has been performed on 20 kV rural distribution network model in DIgSILENT PowerFactory software.


2014 ◽  
Vol 918 ◽  
pp. 195-199
Author(s):  
Florin Dragomir ◽  
Otilia Elena Dragomir

Renewable energy source (RES) enables us to diversify our energy supply. Renewable energy sources are getting more and more widespread, mainly due to the fact that they generate energy by keeping the environment clean. This increases our security of supply and improves European competitiveness creating new industries, jobs, economic growth and export opportunities, whilst also reducing our greenhouse gas emissions. This article proposes a simulation of a three-phase low voltage grid with power generation from photovoltaic sources. The proposed system consists of 192 photovoltaic (PV) panels distributed in 32 rows with each 12 PV panels.


Author(s):  
M. M. Viyathukattuva Mohamed Ali ◽  
P. H. Nguyen ◽  
W. L. Kling ◽  
A. I. Chrysochos ◽  
T. A. Papadopoulos ◽  
...  

2016 ◽  
Vol 54 (3) ◽  
pp. 189-207 ◽  
Author(s):  
Dubravko Frankovic ◽  
Vedran Kirincic ◽  
Vladimir Valentic

Renewable energy sources have become a considerable part of electric transmission networks as well as medium and low voltage distribution networks. Understanding the overall process from design stage up to the installation stage, followed by the commissioning and startup of renewable energy sources plants is essential knowledge that electric engineers nowadays should posses. Therefore, in the first part of the article activities, conducted at the Faculty of Engineering, University of Rijeka, Croatia, necessary for the installation of a fully operational, grid connected photovoltaic power plant with dual-axis tracking system have been described. Consequently, upon photovoltaic plant’s installation and commissioning, students are able to have ‘hands-on’ on a fully functional photovoltaic power plant and perform supervised, ‘live’ measurements and compare it with previously calculated values. Therefore, new – dedicated laboratory sessions have been introduced in an existing subject to make the most of the photovoltaic installation in the teaching process. In the second part, the article is mainly focused on the newly introduced laboratory sessions as well as on the educational framework and methodology. Some of the experiments that our students are able to perform include alternating current and direct current operating values measurements (photovoltaic string and inverter voltages, currents, power, efficiency, etc.), environmental parameters measurements (irradiance, air temperature, wind direction, velocity, etc.) and grounding parameters measurements (soil resistivity, photovoltaic plant’s grounding resistance). The acquired knowledge gained from the activities performed during our educational photovoltaic plant project realization give us the ability to propose a methodology that can be used as the key model for other universities and faculties.


Sign in / Sign up

Export Citation Format

Share Document