Condenser temperature control of an ethylene terephthalate polymerization reactor using fuzzy-logic and classic control methods

Author(s):  
A. Sohrabi ◽  
M. Rafizadeh
ELKHA ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 92
Author(s):  
Riza Agung Firmansyah ◽  
Dani Junianto

Implementation of control systems has been carried out in many fields of science. One of it applications is in the agriculture fields. In this research we implemented a control system on farming in a box. Farming in a box is a system that uses old shipping containers for the purpose of growing plants in any environment. Inside shipping containers is fully assembled hydroponic pipe with air temperature control. In this research was built a little farming box from acryclic to imitate a shipping container. Main focus of this research is design an air temperature control using fuzzy logic controller. Fuzzy logic controller was choosen because many existing farming box use on off controller. In some application, fuzzy logic controller has better performance than on off controller. Farming box temperature is controlled by blowing cool air using an electric fan. In this case, cool air is produced by cold side of peltier. Electric fan speed is controlled by pulse width modulation signal (PWM) that generated from microcontroller. Air temperature data feedback is obtained from DHT 11 sensor that installed in a acrylic box. Sensor is physically connected with microcontroller and Fuzzy logic controller is embedded in microcontroller as an algorithm. Fuzzy logic controller was design with error temperature and error difference as an input, and duty cycle of PWM signal as output. Fuzzy logic controller system performs to reduce the temperature from 31,6 ° C to set poin 28° C in 71 seconds. Steady state error obtained by 1.28% and better than uncontrolled system that obtain steady state error 7,14%.


2018 ◽  
Vol 241 ◽  
pp. 01022 ◽  
Author(s):  
Piotr Wolszczak ◽  
Waldemar Samociuk

The article presents the results of choosing how to control a real non-linear object. Yeast drying requires a precise temperature control due to the possibility of overheating. The object changes properties during of the process flow. Object identification is used and a mathematical model is developed. The model is used to select roboust control methods. The results are compared to the system of two PID regulators used in practice.


1998 ◽  
Vol 31 (11) ◽  
pp. 23-28 ◽  
Author(s):  
M. Ogawa ◽  
S. Ohyama ◽  
F. Watanabe ◽  
M. Shibata ◽  
S. Nishimura ◽  
...  

Author(s):  
P. J. Ragu

In this paper, temperature monitoring of sterilizing equipment system was established with the help of fuzzy and self tuning Adaptive fuzzy logic controller designed in Lab VIEW software. It combines the advantages of both fuzzy logic and self tuning Adaptive fuzzy logic controller. The implementation attempts to rectify the errors between the measured value and the set point which helps to achieve efficient temperature control. The Adaptive fuzzy controller uses defined rules to control the system based on the current values of input variables and temperature errors. The simulation results presented in order to evaluate the proposed method. The result shows that self tuning  Adaptive fuzzy logic controller was tolerant to disturbance and the temperature control is most accurate.


Sign in / Sign up

Export Citation Format

Share Document