Biomechanics of Foot Strike and Spatiotemporal Kinematics for Shod and Barefoot

Keyword(s):  
2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3422
Author(s):  
Jian-Zhi Lin ◽  
Wen-Yu Chiu ◽  
Wei-Hsun Tai ◽  
Yu-Xiang Hong ◽  
Chung-Yu Chen

This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors and five EMG sensors as well as one 24 G accelerometer were synchronised to acquire joint kinematics parameters as well as muscle activation, respectively. In both the FFS and RFS patterns, according to the intraclass correlation coefficient, excellent reliability was found for landing performance and muscle activation. Paired t tests indicated significantly higher ankle plantar flexion in the FFS pattern. Moreover, biceps femoris (BF) and gastrocnemius medialis (GM) activation increased in the pre-stance phase of the FFS compared with that of RFS. The FFS pattern had significantly decreased tibialis anterior (TA) muscle activity compared with the RFS pattern during the pre-stance phase. The results demonstrated that the ankle strategy focused on controlling the foot strike pattern. The influence of the FFS pattern on muscle activity likely indicates that an athlete can increase both BF and GM muscles activity. Altered landing strategy in cases of FFS pattern may contribute both to the running efficiency and muscle activation of the lower extremity. Therefore, neuromuscular training and education are required to enable activation in dynamic running tasks.


2021 ◽  
pp. 036354652110032
Author(s):  
Daisuke Chiba ◽  
Tom Gale ◽  
Kyohei Nishida ◽  
Felipe Suntaxi ◽  
Bryson P. Lesniak ◽  
...  

Background: Lateral extra-articular tenodesis (LET) in combination with anterior cruciate ligament (ACL) reconstruction (ACLR) has been proposed to improve residual rotatory knee instability in patients having ACL deficiency. Purpose/Hypothesis: The purpose was to compare the effects of isolated ACLR (iACLR) versus LET in combination with ACLR (ACLR+LET) on in vivo kinematics during downhill running. It was hypothesized that ACLR+LET would reduce the internal rotation of the reconstructed knee in comparison with iACLR. Study Design: Controlled laboratory study. Methods: A total of 18 patients with ACL deficiency were included. All participants were randomly assigned to receive ACLR+ LET or iACLR during surgery. Six months and 12 months after surgery, knee joint motion during downhill running was measured using dynamic biplane radiography and a validated registration process that matched patient-specific 3-dimensional bone models to synchronized biplane radiographs. Anterior tibial translation (ATT; positive value means “anterior translation”) and tibial rotation (TR) relative to the femur were calculated for both knees. The side-to-side differences (SSDs) in kinematics were also calculated (operated knee–contralateral healthy knee). The SSD value was compared between ACLR+LET and iACLR groups using a Mann-Whitney U test. Results: At 6 months after surgery, the SSD of ATT in patients who had undergone ACLR+LET (–1.9 ± 2.0 mm) was significantly greater than that in patients who had undergone iACLR (0.9 ± 2.3 mm) at 0% of the gait cycle (foot strike) ( P = .031). There was no difference in ATT 12 months after surgery. Regarding TR, there were no differences between ACLR+LET and iACLR at either 6 months ( P value range, .161-.605) or 12 months ( P value range, .083-.279) after surgery. Conclusion: LET in combination with ACLR significantly reduced ATT at the instant of foot strike during downhill running at 6 months after surgery. However, this effect was not significant at 12 months after surgery. The addition of LET to ACLR had no effect on TR at both 6 and 12 months after surgery. Clinical Relevance: LET in combination with ACLR may stabilize sagittal knee motion during downhill running in the early postoperation phase, but according to this study, it has no effect on 12-month in vivo kinematics. Registration: NCT02913404 ( ClinicalTrials.gov identifier)


2018 ◽  
Vol 37 (5) ◽  
pp. 477-483 ◽  
Author(s):  
Pedro Ángel Latorre Román ◽  
Fernando Redondo Balboa ◽  
Juan Párraga Montilla ◽  
Víctor Manuel Soto Hermoso ◽  
Pedro José Consuegra González ◽  
...  

Author(s):  
R F Ker ◽  
M B Bennett ◽  
R McN Alexander ◽  
R C Kester

Many force-plate records of human locomotion show an impulse (the foot strike) shortly after ground contact. The authors' hypothesis is that this results from the rapid deceleration of a mass (the ‘effective foot’) under forces which compress the heel pad. The quantitative implications are investigated through an illustrative calculation. The observations used are (a) the peak force reached in foot strike (b) the vertical velocity of the foot immediately before ground contact and (c) the properties of the heel pad in compression. Data for (a) and (b) are available in the literature; measurements for (c) are presented here. The deductions are: (a) the time taken to reach peak force is about 5.4 ms, which agrees with published measurements; (b) the mass of the effective foot is about 3.6 kg. The effective foot thus includes a substantial portion of the leg: this seems reasonable. The models used for the calculations clarify the relationship between the foot strike and the shock wave, which it generates.


PM&R ◽  
2015 ◽  
Vol 7 ◽  
pp. S203-S204 ◽  
Author(s):  
Jennifer Soo Hoo ◽  
Brian J. Krabak ◽  
Mark Kasmer ◽  
Daron Vandeleur ◽  
Marcia A. Ciol

2021 ◽  
Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract BackgroundDue to disrupted motor and proprioceptive function lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in case of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on non-amputated and amputated side during slow walking.MethodsFourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases with non-amputated or amputated side.ResultsWhen outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly higher displacement of center of mass. ConclusionsResults of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response. To improve their balancing responses to unexpected balance perturbation people fitted with passive transtibial prostheses should undergo perturbation-based balance training during clinical rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document