Brain Tumor Segmentation and Classification Using Deep Belief Network

Author(s):  
T.A. Jemimma ◽  
Y. Jacob Vetha Raj
SIMULATION ◽  
2020 ◽  
Vol 96 (11) ◽  
pp. 867-879
Author(s):  
Li Xu ◽  
Qi Gao ◽  
Nasser Yousefi

Brain tumors are a group of cancers that originate from different cells of the central nervous system or cancers of other tissues in the brain. Excessive cell growth in the brain is called a tumor. Tumor cells need food and blood to survive. Growth and proliferation of tumor cells in the cranial space, cause strain inside the brain and thus disrupt vital human structures. Therefore, diagnosis in the early stages of brain tumors is crucial. This study introduces a new optimized method for early diagnosis of the brain tumor. The method has five main parts of noise reduction, tumor segmentation, morphology, feature extraction based on wavelet and gray-level co-occurrence matrix, and classification based on an optimized deep belief network. For optimizing the classifier network, an enhanced version of the moth search algorithm is utilized. Simulation results are applied to three different datasets, FLAIR, T1, and T2, and the accuracy results of the presented method are compared with two other metaheuristics, particle swarm optimization and Bat algorithms. The final results showed that the presented technique has good achievements toward the compared methods.


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


2017 ◽  
Vol 16 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Tianming Zhan ◽  
Yi Chen ◽  
Xunning Hong ◽  
Zhenyu Lu ◽  
Yunjie Chen

2021 ◽  
Vol 11 (1) ◽  
pp. 380-390
Author(s):  
Pradipta Kumar Mishra ◽  
Suresh Chandra Satapathy ◽  
Minakhi Rout

Abstract Segmentation of brain image should be done accurately as it can help to predict deadly brain tumor disease so that it can be possible to control the malicious segments of brain image if known beforehand. The accuracy of the brain tumor analysis can be enhanced through the brain tumor segmentation procedure. Earlier DCNN models do not consider the weights as of learning instances which may decrease accuracy levels of the segmentation procedure. Considering the above point, we have suggested a framework for optimizing the network parameters such as weight and bias vector of DCNN models using swarm intelligent based algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA). The simulation results reveals that the WOA optimized DCNN segmentation model is outperformed than other three optimization based DCNN models i.e., GA-DCNN, PSO-DCNN, GWO-DCNN.


Sign in / Sign up

Export Citation Format

Share Document