Implementation of high-frequency high-voltage power supply for ozone generator system using embedded controller

Author(s):  
G. Udhayakumar ◽  
M R Rashmi ◽  
K. Patel ◽  
G. P. Ramesh ◽  
A Suresh
Author(s):  
G. Udhayakumar ◽  
Rashmi M R ◽  
K. Patel ◽  
G.P. Ramesh ◽  
Suresh A

<p>Artificial Ozone Generating system needs High Voltage, High Frequency supply. The Ozonator distorts the supply currents and henceforth affect the supply power factor. This paper presents the performance comparison of PWM inverter to Power Factor Corrected (PFC) converter with PWM inverter based High-voltage High-frequency power supply for ozone generator system. The conventional inverter has front end bridge rectifier with smoothing capacitor. It draws non-sinusoidal current from ac mains; as a result input supply has more harmonics and poor power factor. Hence, there is a continuous need for power factor improvement and reduction of line current harmonics.  The proposed system has active power factor correction converter which is used to achieve sinusoidal current and improve the supply power factor. The active PFC converter with PWM inverter fed ozone generator generates more ozone output compared to the conventional inverter. Thus the proposed system has less current harmonics and better input power factor compared to the conventional system.  The performance of the both inverters are compared and analyzed with the help of simulation results presented in this paper.</p>


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1228
Author(s):  
Marcin Winnicki ◽  
Artur Wiatrowski ◽  
Michał Mazur

High Power Impulse Magnetron Sputtering (HiPIMS) was used for deposition of indium tin oxide (ITO) transparent thin films at low substrate temperature. A hybrid-type composite target was self-prepared by low-pressure cold spraying process. Prior to spraying In2O3 and oxidized Sn powders were mixed in a volume ratio of 3:1. Composite In2O3/Sn coating had a mean thickness of 900 µm. HiPIMS process was performed in various mixtures of Ar:O2: (i) 100:0 vol.%, (ii) 90:10 vol.%, (iii) 75:25 vol.%, (iv) 50:50 vol.%, and (v) 0:100 vol.%. Oxygen rich atmosphere was necessary to oxidize tin atoms. Self-design, simple high voltage power switch capable of charging the 20 µF capacitor bank from external high voltage power supply worked as a power supply for an unbalanced magnetron source. ITO thin films with thickness in the range of 30–40 nm were obtained after 300 deposition pulses of 900 V and deposition time of 900 s. The highest transmission of 88% at λ = 550 nm provided 0:100 vol. % Ar:O2 mixture, together with the lowest resistivity of 0.03 Ω·cm.


Sign in / Sign up

Export Citation Format

Share Document