Research on feature matching algorithm based on three-dimensional information acquisition

Author(s):  
Xiaoning Zong ◽  
Xinzhi Li
2015 ◽  
Vol 2015 ◽  
pp. 1-15
Author(s):  
Huan Liu ◽  
Kuangrong Hao ◽  
Yongsheng Ding ◽  
Chunjuan Ouyang

Stereo feature matching is a technique that finds an optimal match in two images from the same entity in the three-dimensional world. The stereo correspondence problem is formulated as an optimization task where an energy function, which represents the constraints on the solution, is to be minimized. A novel intelligent biological network (Bio-Net), which involves the human B-T cells immune system into neural network, is proposed in this study in order to learn the robust relationship between the input feature points and the output matched points. A model from input-output data (left reference point-right target point) is established. In the experiments, the abdomen reconstructions for different-shape mannequins are then performed by means of the proposed method. The final results are compared and analyzed, which demonstrate that the proposed approach greatly outperforms the single neural network and the conventional matching algorithm in precise. Particularly, as far as time cost and efficiency, the proposed method exhibits its significant promising and potential for improvement. Hence, it is entirely considered as an effective and feasible alternative option for stereo matching.


1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


2011 ◽  
Vol 65 ◽  
pp. 497-502
Author(s):  
Yan Wei Wang ◽  
Hui Li Yu

A feature matching algorithm based on wavelet transform and SIFT is proposed in this paper, Firstly, Biorthogonal wavelet transforms algorithm is used for medical image to delaminating, and restoration the processed image. Then the SIFT (Scale Invariant Feature Transform) applied in this paper to abstracting key point. Experimental results show that our algorithm compares favorably in high-compressive ratio, the rapid matching speed and low storage of the image, especially for the tilt and rotation conditions.


Author(s):  
Yan Yuqin ◽  
Diao Xunlin ◽  
He Shujuan ◽  
Cheng Lin ◽  
Ma Lvzhou ◽  
...  

2013 ◽  
Vol 670 ◽  
pp. 202-207 ◽  
Author(s):  
Jun Ting Cheng ◽  
C. Zhao ◽  
W.L. Zhao ◽  
W.H. Wu

In the development of a three-dimensional measurement system, binocular stereo matching is the most important and difficult. In the basis of introducing selective principles of matching algorithm, a new stereo matching algorithm for binocular vision is put forward that is named noncoded difference measuring distance. The algorithm effectively grapples with the problem of searching for the coincidence relation of raster and can efficiently and accurately obtain three-dimensional world coordinates of the entities. Experiment results show that this 3D measuring machine can effectively measure the 3D solid profile of free surface. During the evaluation test for accuracy, scan a standard plane. Fit all 3D points in one plane, and then the flatness value of this plane is obtained. The flatness value of the standard plane has been ultimately measured as: ± 0.0462mm, this measuring accuracy can completely satisfy the requirements of rapid prototyping or CNC machining, it as well as achieves the stated accuracy (± 0.05mm).


Sign in / Sign up

Export Citation Format

Share Document