Secure transmission medical data for pervasive healthcare system using android

Author(s):  
G. Sudha ◽  
R. Ganesan

Ideally, secure transmission of medical image data is one of the major challenges in health sector. The National Health Information Network has to protect the data in confidential manner. Storage is also one of the basic concern along with secure transmission. In this paper we propose an algorithm that supports confidentiality, authentication and integrity implementation of the scrambled data before transmitting on the communication medium. Before communication the data is compressed while keeping data encrypted. The research work demonstrate with simulation results. The results shows that the proposed work effectively maintains confidentiality, authentication and integrity. The experimental results evaluated medical image quality like PSNR, MSE, SC, and NAEetc.


2011 ◽  
pp. 659-673
Author(s):  
Giovanni Russello ◽  
Changyu Dong ◽  
Naranker Dualy

In this chapter, the authors describe a new framework for pervasive healthcare applications where the patient’s consent has a pivotal role. In their framework, patients are able to control the disclosure of their medical data. The patient’s consent is implicitly captured by the context in which his or her medical data is being accessed. Context is expressed in terms of workflows. The execution of a task in a workflow carries information that the system uses for providing access rights accordingly to the patient’s consent. Ultimately, the patient is in charge of withdrawing consent if necessary. Moreover, the use of workflow enables the enforcement of the need-to-kwon principle. This means that a subject is authorised to access sensitive data only when required by the actual situation.


Author(s):  
Antonio Coronato ◽  
Luigi Gallo ◽  
Giuseppe De Pietro

Pervasive healthcare is the field of application emerging from the combination of healthcare with pervasive computing, which is the computing paradigm that provides users with access to services in a transparent way, wherever they are and whichever their interacting device is. In this paper, a software infrastructure for pervasive healthcare is presented. Such an infrastructure aims at supporting medical practitioners with advanced pervasive access to medical data, which is also context-aware in the sense that the modality to fruit data depends on the device used by the operator and on his or her physical position within the environment. The paper also describes a service for high quality 3D rendering of medical volume data, which takes advantage of the software infrastructure to distribute the computational load upon the devices available in the environment in a completely transparent way to users.


Author(s):  
Giovanni Russello ◽  
Changyu Dong ◽  
Naranker Dualy

In this chapter, the authors describe a new framework for pervasive healthcare applications where the patient’s consent has a pivotal role. In their framework, patients are able to control the disclosure of their medical data. The patient’s consent is implicitly captured by the context in which his or her medical data is being accessed. Context is expressed in terms of workflows. The execution of a task in a workflow carries information that the system uses for providing access rights accordingly to the patient’s consent. Ultimately, the patient is in charge of withdrawing consent if necessary. Moreover, the use of workflow enables the enforcement of the need-to-kwon principle. This means that a subject is authorised to access sensitive data only when required by the actual situation.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Anastasios Fragopoulos ◽  
John Gialelis ◽  
Dimitrios Serpanos

Nowadays in modern and ubiquitous computing environments, it is imperative more than ever the necessity for deployment of pervasive healthcare architectures into which the patient is the central point surrounded by different types of embedded and small computing devices, which measure sensitive physical indications, interacting with hospitals databases, allowing thus urgent medical response in occurrences of critical situations. Such environments must be developed satisfying the basic security requirements for real-time secure data communication, and protection of sensitive medical data and measurements, data integrity and confidentiality, and protection of the monitored patient's privacy. In this work, we argue that the MPEG-21 Intellectual Property Management and Protection (IPMP) components can be used in order to achieve protection of transmitted medical information and enhance patient's privacy, since there is selective and controlled access to medical data that sent toward the hospital's servers.


Author(s):  
Antonio Coronato ◽  
Luigi Gallo ◽  
Giuseppe De Pietro

Pervasive healthcare is the field of application emerging from the combination of healthcare with pervasive computing, which is the computing paradigm that provides users with access to services in a transparent way, wherever they are and whichever their interacting device is. In this paper, a software infrastructure for pervasive healthcare is presented. Such an infrastructure aims at supporting medical practitioners with advanced pervasive access to medical data, which is also context-aware in the sense that the modality to fruit data depends on the device used by the operator and on his or her physical position within the environment. The paper also describes a service for high quality 3D rendering of medical volume data, which takes advantage of the software infrastructure to distribute the computational load upon the devices available in the environment in a completely transparent way to users.


Author(s):  
Javier Espina ◽  
Heribert Baldus ◽  
Thomas Falck ◽  
Oscar Garcia ◽  
Karin Klabunde

Wireless body sensor networks (BSNs) are an indispensable building stone for any pervasive healthcare system. Although suitable wireless technologies are available and standardization dedicated to BSN communication has been initiated, the authors identify key challenges in the areas of easy-of-use, safety, and security that hinder a quick adoption of BSNs. To address the identified issues they propose using body-coupled communication (BCC) for the automatic formation of BSNs and for user identification. They also present a lightweight mechanism that enables a transparent security setup for BSNs used in pervasive healthcare systems.


Sign in / Sign up

Export Citation Format

Share Document