Interface charge effect measurement in 2-μm-thick polypropylene sample under voltage with thermal method

Author(s):  
Celine Corbrion ◽  
Stephane Hole
Author(s):  
T. Ichinokawa ◽  
H. Maeda

I. IntroductionThermionic electron gun with the Wehnelt grid is popularly used in the electron microscopy and electron beam micro-fabrication. It is well known that this gun could get the ideal brightness caluculated from the Lengumier and Richardson equations under the optimum condition. However, the design and ajustment to the optimum condition is not so easy. The gun has following properties with respect to the Wehnelt bias; (1) The maximum brightness is got only in the optimum bias. (2) In the larger bias than the optimum, the brightness decreases with increasing the bias voltage on account of the space charge effect. (3) In the smaller bias than the optimum, the brightness decreases with bias voltage on account of spreading of the cross over spot due to the aberrations of the electrostatic immersion lens.In the present experiment, a new type electron gun with the electrostatic and electromagnetic lens is designed, and its properties are examined experimentally.


2008 ◽  
Author(s):  
Venkata M. Voora ◽  
Tino Hofmann ◽  
Matthias Brandt ◽  
Michael Lorenz ◽  
Marius Grundmann ◽  
...  

Author(s):  
Ilwoo Jung ◽  
Byoungdeok Choi ◽  
Bonggu Sung ◽  
Daejung Kim ◽  
Ilgweon Kim ◽  
...  

Abstract Body effect is the key characteristic of DRAM cell transistor. Conventional method uses a TEG structure for body effect measurement. But this measurement is not accurate, because TEG structure has only several transistors and it is located outside of the DRAM die. This paper suggests a viable method for measuring DRAM cell transistor body effect. It uses a memory test system for fast, massive, nondestructive measurement. Newly developed method can measure 100,000 DRAM cell body effects in two minute, without sample damage. The test gives one median value and 100,000 individual values of body effects. Median value of measured body effects is equal to the TEG body effect. An individual DRAM cell body effect has a correlation with the fin height.


Sign in / Sign up

Export Citation Format

Share Document