Online Route Planning over Time-Dependent Road Networks

Author(s):  
Di Chen ◽  
Ye Yuan ◽  
Wenjin Du ◽  
Yurong Cheng ◽  
Guoren Wang
Author(s):  
Ye Yuan ◽  
Xiang Lian ◽  
Guoren Wang ◽  
Lei Chen ◽  
Yuliang Ma ◽  
...  

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Yajun Yang ◽  
Hanxiao Li ◽  
Junhu Wang ◽  
Qinghua Hu ◽  
Xin Wang ◽  
...  

Knearest neighbor (kNN) search is an important problem in location-based services(LBS) and has been well studied on static road networks. However, in real world, road networks are often time-dependent; i.e., the time for traveling through a road always changes over time. Most existing methods forkNN query build various indexes maintaining the shortest distances for some pairs of vertices on static road networks. Unfortunately, these methods cannot be used for the time-dependent road networks because the shortest distances always change over time. To address the problem ofkNN query on time-dependent road networks, we propose a novel voronoi-based index in this paper. Furthermore, we propose a novel balanced tree, namedV-tree, which is a secondary level index on voronoi-based index to make our querying algorithm more efficient. Moreover, we propose an algorithm for preprocessing time-dependent road networks such that the waiting time is not necessary to be considered. We confirm the efficiency of our method through experiments on real-life datasets.


Author(s):  
Muxi Leng ◽  
Yajun Yang ◽  
Junhu Wang ◽  
Qinghua Hu ◽  
Xin Wang

Analytica ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 66-75
Author(s):  
Toshiki Horikoshi ◽  
Chihiro Kitaoka ◽  
Yosuke Fujii ◽  
Takashi Asano ◽  
Jiawei Xu ◽  
...  

The ingredients of an antipyretic (acetaminophen, AAP) and their metabolites excreted into fingerprint were detected by surface-assisted laser desorption ionization (SALDI) mass spectrometry using zeolite. In the fingerprint taken 4 h after AAP ingestion, not only AAP but also the glucuronic acid conjugate of AAP (GAAP), caffeine (Caf), ethenzamide (Eth), salicylamide (Sala; a metabolite of Eth), and urea were detected. Fingerprints were collected over time to determine how the amounts of AAP and its metabolite changed with time, and the time dependence of the peak intensities of protonated AAP and GAAP was measured. It was found that the increase of [GAAP+H]+ peak started later than that of [AAP+H]+ peak, reflecting the metabolism of AAP. Both AAP and GAAP reached maximum concentrations approximately 3 h after ingestion, and were excreted from the body with a half-life of approximately 3.3 h. In addition, fingerprint preservation was confirmed by optical microscopy, and fingerprint shape was retained even after laser irradiation of the fingerprint. Our method may be used in fingerprint analysis.


2010 ◽  
Vol 28 (10) ◽  
pp. 1714-1720 ◽  
Author(s):  
Peter H. Gann ◽  
Angela Fought ◽  
Ryan Deaton ◽  
William J. Catalona ◽  
Edward Vonesh

Purpose To introduce a novel approach for the time-dependent quantification of risk factors for prostate cancer (PCa) detection after an initial negative biopsy. Patients and Methods Data for 1,871 men with initial negative biopsies and at least one follow-up biopsy were available. Piecewise exponential regression models were developed to quantify hazard ratios (HRs) and define cumulative incidence curves for PCa detection for subgroups with specific patterns of risk factors over time. Factors evaluated included age, race, serum prostate-specific antigen (PSA) concentration, PSA slope, digital rectal examination, dysplastic glands or prostatitis on biopsy, ultrasound gland volume, urinary symptoms, and number of negative biopsies. Results Four hundred sixty-five men had PCa detected, after a mean follow-up time of 2.8 years. All of the factors were independent predictors of PCa detection except for PSA slope, as a result of its correlation with time-dependent PSA level, and race. PSA (HR = 3.90 for > 10 v 2.5 to 3.9 ng/mL), high-grade prostatic intraepithelial neoplasia/atypical glands (HR = 2.97), gland volume (HR = 0.39 for > 50 v < 25 mL), and number of repeat biopsies (HR = 0.36 for two v zero repeat biopsies) were the strongest predictors. Men with high-risk versus low-risk event histories had a 20-fold difference in PCa detection over 5 years. Conclusion Piecewise exponential models provide an approach to longitudinal analysis of PCa risk that allows clinicians to see the interplay of risk factors as they unfold over time for individual patients. With these models, it is possible to identify distinct subpopulations with dramatically different needs for monitoring and repeat biopsy.


2018 ◽  
Vol 38 (8) ◽  
pp. 904-916 ◽  
Author(s):  
Aasthaa Bansal ◽  
Patrick J. Heagerty

Many medical decisions involve the use of dynamic information collected on individual patients toward predicting likely transitions in their future health status. If accurate predictions are developed, then a prognostic model can identify patients at greatest risk for future adverse events and may be used clinically to define populations appropriate for targeted intervention. In practice, a prognostic model is often used to guide decisions at multiple time points over the course of disease, and classification performance (i.e., sensitivity and specificity) for distinguishing high-risk v. low-risk individuals may vary over time as an individual’s disease status and prognostic information change. In this tutorial, we detail contemporary statistical methods that can characterize the time-varying accuracy of prognostic survival models when used for dynamic decision making. Although statistical methods for evaluating prognostic models with simple binary outcomes are well established, methods appropriate for survival outcomes are less well known and require time-dependent extensions of sensitivity and specificity to fully characterize longitudinal biomarkers or models. The methods we review are particularly important in that they allow for appropriate handling of censored outcomes commonly encountered with event time data. We highlight the importance of determining whether clinical interest is in predicting cumulative (or prevalent) cases over a fixed future time interval v. predicting incident cases over a range of follow-up times and whether patient information is static or updated over time. We discuss implementation of time-dependent receiver operating characteristic approaches using relevant R statistical software packages. The statistical summaries are illustrated using a liver prognostic model to guide transplantation in primary biliary cirrhosis.


Sign in / Sign up

Export Citation Format

Share Document