Investigating the impact of group mobility models over the on-demand routing protocol in MANETs

Author(s):  
Muhammad Shoaib ◽  
Nasru Minallah ◽  
Sadiq Shah ◽  
Shahzad Rizwan ◽  
Hameed Hussain
2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Geetha Jayakumar ◽  
Gopinath Ganapathi

Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols plays an important role. We compare the performance of two prominent on-demand routing protocols for mobile ad hoc networks: dynamic source routing (DSR), ad hoc on-demand distance vector routing (AODV). A detailed simulation model with medium access control (MAC) and physical layer models is used to study the interlayer interactions and their performance implications. We demonstrate that even though DSR and AODV share similar on-demand behavior, the differences in the protocol mechanisms can lead to significant performance differentials. In this paper, we examine both on-demand routing protocols AODV and DSR based on packet delivery ratio, normalized routing load, normalized MAC load, average end-to-end delay by varying the node density, network loading, and mobility variations for reference point group mobility and random waypoint models. This framework aims to evaluate the effect of mobility models on the performance of mobile ad hoc networks (MANETs) routing protocols. Our results show that the protocol performance may vary drastically across mobility models and performance rankings of protocols may vary with the mobility models used. This effect can be explained by the interaction of the mobility characteristics with the connectivity graph properties.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 38-41
Author(s):  
Hari Shankar Sahu ◽  
Rupanita Das

Now a days telecommunication technology leads to a rapid growth of number of users, these number of users nothing but number of nodes in MANET.A wireless ad hoc network is a decentralized type of wireless network. The mobility of nodes effect on the performance of the network. Due to mobility of nodes the link breaks number of times which effect on the packet delivery. Therefore to analyze the performance, packet delivery fraction (PDF)can be used. This paper describe the packet delivery fraction of on demand routing protocol AODV and DSR on different terrain areas using GLOMOSIM.


2014 ◽  
Vol 651-653 ◽  
pp. 1868-1874
Author(s):  
Li Zhu ◽  
Lan Bai

VANETs is a rapid developed wireless mobile MANETs network with special challenge nature. It is a distributed and self-organized communication network based on moving vehicle. This network has characteristics like limited bandwidth, strong mobility, strong dynamic network topology, limited node degrees freedom, equipment capacity constraints and weak physical security. These characteristics usually make typical routing protocol in mobile MANET show a low efficiency in mobile VANETs, even fail. MANET routing algorithm is roughly divided into two categories, namely table driven routing protocol and on-demand routing protocol. It is due to the particularity of driving cars on the road. So how to improve network routing protocol in the performance is now a challenging problem. The purpose of this article studies network routing mechanism based on wireless vehicular networks simulation method. On the basis of analyzing the performance of typical routing protocols in MANET, such as DSDV, AODV and DSR, the improved scheme of AODV on-demand routing algorithm is put forward.


2005 ◽  
Vol 11 (1-2) ◽  
pp. 21-38 ◽  
Author(s):  
Yih-Chun Hu ◽  
Adrian Perrig ◽  
David B. Johnson

2008 ◽  
Vol 2 (4) ◽  
pp. 325-340 ◽  
Author(s):  
Qing Li ◽  
Meiyuan Zhao ◽  
Jesse Walker ◽  
Yih-Chun Hu ◽  
Adrian Perrig ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Trung Kien Vu ◽  
Sungoh Kwon

We propose a mobility-assisted on-demand routing algorithm for mobile ad hoc networks in the presence of location errors. Location awareness enables mobile nodes to predict their mobility and enhances routing performance by estimating link duration and selecting reliable routes. However, measured locations intrinsically include errors in measurement. Such errors degrade mobility prediction and have been ignored in previous work. To mitigate the impact of location errors on routing, we propose an on-demand routing algorithm taking into account location errors. To that end, we adopt the Kalman filter to estimate accurate locations and consider route confidence in discovering routes. Via simulations, we compare our algorithm and previous algorithms in various environments. Our proposed mobility prediction is robust to the location errors.


Sign in / Sign up

Export Citation Format

Share Document