Research on Path Following Control Method of Agricultural Machinery Autonomous Navigation through LQR-Feed Forward Control

Author(s):  
Chunzhao Zhao ◽  
Chengliang Zhang ◽  
Fengjiang Guo ◽  
Yiqun Shao
Robotica ◽  
2015 ◽  
Vol 35 (4) ◽  
pp. 876-891 ◽  
Author(s):  
Huang Xinjing ◽  
Li Yibo ◽  
Du Fei ◽  
Jin Shijiu

SUMMARYA 2D path following control method for Autonomous Underwater Vehicles (AUVs) based on dynamic circle heading modification (DCHM) is presented. The method makes a dynamic auxiliary circle, whose radius depends on the cross-track error e, to intersect the desired path to get a new expected path point, and then determines a modified expected heading for the AUV. The guidance function is achieved by a direct mapping between e and the heading modification value Ψm. Several cases are tested in order to demonstrate the performance of the guidance and control method based on DCHMs for a real AUV. Results show that methods using a convex mapping function between e and Ψm based on our new idea can easily achieve a better convergence of path following, and reduce the error between the actual and desired heading angles. We can also customize a discretionary mapping between e and Ψm to get better path following performance.


Author(s):  
Xiaofei Wang ◽  
Zaojian Zou ◽  
Tieshan Li ◽  
Weilin Luo

The control problem of underactuated surface ships and underwater vehicles has attracted more and more attentions during the last years. Path following control aims at forcing the vehicles to converge and follow a desired path. Path following control of underactuated surface ships or underwater vehicles is an important issue to study nonlinear systems control, and it is also important in the practical implementation such as the guidance and control of marine vehicles. This paper proposes two nonlinear model predictive control algorithms to force an underactuated ship to follow a predefined path. One algorithm is based on state space model, the other is based on analytic model predictive control. In the first algorithm, the state space GPC (Generalized Predictive Control) method is used to design the path-following controller of underactuated ships. The nonlinear path following system of underactuated ships is discretized and re-arranged into state space model. Then states are augmented to get the new state space model with control increment as input. Thus the problem is becoming a typical state space GPC problem. Some characters of GPC such as cost function, receding optimization, prediction horizon and control horizon occur in the design procedure of path-following controller. The control law is derived in the form of control increment. In the second algorithm, an analytic model predictive control algorithm is used to study the path following problem of underactuated ships. In this path-following algorithm, the output-redefinition combined heading angle and cross-track error is introduced. As a result, the original single-input multiple-output (SIMO) system is transformed into an equivalent single-input single-output (SISO) system. For the transformed system, we use the analytic model predictive control method to get path-following control law in the analytical form. The analytic model predictive controller can be regarded as special feedback linearization method optimized by predictive control method. It provides a systematic method to compute control parameters rather than by try-and-error method which is often used in the exact feedback linearization control. Relative to GPC, the analytic model predictive control method provides an analytic optimal solution and decreases the computational burden, and the stability of closed-loop system is guaranteed. The path-following system of underactuated ships is guaranteed to follow and stabilize onto the desired path. Numerical simulations demonstrate the validity of the proposed control laws.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110381
Author(s):  
Mei Zaiwu ◽  
Chen Liping ◽  
Ding Jianwan

A novel feedforward control method of elastic-joint robot based on hybrid inverse dynamic model is proposed in this paper. The hybrid inverse dynamic model consists of analytical model and data-driven model. Firstly, the inverse dynamic analytical model of elastic-joint robot is established based on Lie group and Lie algebra, which improves the efficiency of modeling and calculation. Then, by coupling the data-driven model with the analytical model, a feed-forward control method based on hybrid inverse dynamics model is proposed. This method can overcome the influence of the inaccuracy of the analytical inverse dynamic model on the control performance, and effectively improve the control accuracy of the robot. The data-driven model is used to compensate for the parameter uncertainties and non-parameter uncertainties of the analytical dynamic model. Finally, the proposed control method is proved to be stable and the multi-domain integrated system model of industrial robot is developed to verify the performance of the control scheme by simulation. The simulation results show that the proposed control method has higher control accuracy than the traditional torque feed-forward control method.


Sign in / Sign up

Export Citation Format

Share Document