High Frequency Asymptotic Evaluation of PO Integral for EM Scattering from PEC Circular Cylinder

Author(s):  
Ta Quang Ngoc ◽  
Hiroshi Shirai
1962 ◽  
Vol 58 (4) ◽  
pp. 662-670
Author(s):  
A. Sharples

ABSTRACTThe diffraction of a high-frequency plane sound wave by a circular cylinder is investigated when the boundary condition on the cylinder is expressed by means of an equation of the form The special feature of this investigation is that an extended form of the Kirchhoff-Fresnel theory of diffraction is used to find an integral representation for the scattering coefficient. In order to avoid the complicated analysis which would be necessary to evaluate the integrals concerned, the more natural geometrical acoustics approach is used to find the first correction term in the scattering coefficient. Numerical results are given for large and small values of the impedance Z.


Author(s):  
Haecheon Choi

In this paper, we present two successful results from active controls of flows over a circular cylinder and a sphere for drag reduction. The Reynolds number range considered for the flow over a circular cylinder is 40∼3900 based on the free-stream velocity and cylinder diameter, whereas for the flow over a sphere it is 105 based on the free-stream velocity and sphere diameter. The successful active control methods are a distributed (spatially periodic) forcing and a high-frequency (time periodic) forcing. With these control methods, the mean drag and lift fluctuations decrease and vortical structures are significantly modified. For example, the time-periodic forcing with a high frequency (larger than 20 times the vortex shedding frequency) produces 50% drag reduction for the flow over a sphere at Re = 105. The distributed forcing applied to the flow over a circular cylinder results in a significant drag reduction at all the Reynolds numbers investigated.


Radio Science ◽  
1984 ◽  
Vol 19 (4) ◽  
pp. 1001-1025 ◽  
Author(s):  
Richard W. Ziolkowski ◽  
Georges A. Deschamps

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Lei Sun ◽  
Yong Huang ◽  
Xiwei Wang ◽  
Xiang Feng ◽  
Wei Xiao

Abstract The flow past a triangular cylinder is one of the fundamental flows and widely utilized in flame stabilization and heat transfer. In this study, the near wake and vortex characteristics of the flow past an equilateral triangular cylinder are experimentally measured by a high frequency particle image velocimetry (PIV) system at 3 kHz. The triangular cylinder is installed in a wind tunnel with Reynolds numbers ranging from 10,700 to 17,700. The Reynolds-averaged and phase-averaged methods are utilized to analyze the flow field. Based on the flow fields, the length of the vortex formation region is about 1.5 times of the length of the equilateral triangle side. The residence time of a vortex in the vortex formation region is equal to a vortex shedding period. The stream wise velocity of the vortex core center downstream the vortex formation is about 0.8 times of the freestream velocity, which is slightly larger than the value about 0.7 for the flow past a circular cylinder at the same Reynolds number. The maximum tangential velocity at the periphery of the vortex core maybe occurs slightly in advance of the vortex reaching the boundary of the vortex formation region. The normalized lengths of the recirculation zone of the triangular cylinder keep nearly unchanged and are about 1.55 to 1.9 times of those of the circular cylinder at the same Reynolds number. The normalized normal wise instead of stream wise turbulence intensity has stronger effects on the distribution of the normalized turbulent kinetic energy.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 32425-32429
Author(s):  
Wei Yang ◽  
Conghui Qi ◽  
Yuyue Zhang

Sign in / Sign up

Export Citation Format

Share Document