Design of Variable Air Volume Conditioning Control System Based on CAN

Author(s):  
Zhang Chen ◽  
Xu Jian
1988 ◽  
Vol 31 (1) ◽  
pp. 56-61
Author(s):  
Atsushi Takahashi ◽  
Takao Okada

This study discusses various control systems that can keep the room pressure and supply/exhaust airflow rate at constant levels in "other rooms" of a highly airtight containment facility when the supply/exhaust airflow is shut off in one of the rooms for decontamination purposes. This study has shown that the constant air volume control system (CAV) allows hysteresis to occur at small differentials on the performance curve of the static pressure differentials and that this hysteresis can cause wide fluctuations in room pressure. In contrast, the variable air volume, central processing unit (VAV-CPU) control system can maintain both airflow rates and room pressures. Each room pressure was controllable to the set level, with an error of less than ±0.5 mmH2O even during transient distur bances. This control system limited fluctuations in the airflow to and from each room to 5 percent during the transient responses. This control system also allows power savings in the operation of supply/exhaust fans, because of the reduced airflow rate and the static pressure of the fans, and is considered to be an excellent control system.


2018 ◽  
Vol 38 ◽  
pp. 04012
Author(s):  
Sai Feng Xu ◽  
Xing Lin Yang ◽  
Zou Ying Le

For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins’ dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.


2013 ◽  
Vol 774-776 ◽  
pp. 407-410
Author(s):  
Qiu Hua Miao ◽  
Zhi Guang Guan

In this paper, a kind of efficient air-conditioning control system is proposed. PIC18F458 is adopted as main control unit of the system , which collects all kinds of analog singles such as temperature, humidity and so on, then convert them to digital by the A/D itself. After disposing and calculating each analog signal the system drives corresponding actuator to work to adjust temperature, humidity and cleanness of the air in bus, making passengers satisfied with air quality in bus.


Sign in / Sign up

Export Citation Format

Share Document