scholarly journals A shape-adaptive partitioning method for MPEG-4 video encoding

Author(s):  
Yong He ◽  
I. Ahmad ◽  
M.L. Liou
2020 ◽  
Author(s):  
Zenghui Yang

Quantum mechanics/molecular mechanics (QM/MM) methods partition the system into active and environmental regions and treat them with different levels of theory, achieving accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM methods allow on-the-fly changes to the QM/MM partitioning of the system. Many of the available energy-based AP-QM/MM methods partition the system according to distances to pre-chosen centers of active regions. For such AP-QM/MM methods, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to general geometrical or potential-related criteria, extending the range of application of energy-based AP-QM/MM methods to systems where active regions may occur or vanish during the simulation.


2013 ◽  
Vol 756-759 ◽  
pp. 890-894 ◽  
Author(s):  
Qing Sheng Yu ◽  
Jian Zhang ◽  
Jin Xiang Peng

Based on the Joint Video Team (JVT) of the ITU-T Video Coding Experts Group VC EG and the IS O/IEC Moving Picture Experts Group MPEG, an RD optimal Macro Block mode decision scheme for Internet error channel streaming is introduced. The scheme employs the luminance Rate Distortion (RD) optimal mode decision scheme so as to take the effects of video encoding distortion and the channel error propagation to get higher error robustness for error transmission. Based on the Wireless Sensor Network, this paper analyzes the data distortion problem when transmitting H.264 coded video stream over error-prone channel. And the authors also have discussed a widely accepted technique that introduces more intra-coded information on macro block basis. Additionally, this paper introduces a simple loss and multiplication factor estimation method, the rate-distortion optimized assessing strategy over the whole situation.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1843
Author(s):  
Jelena Vlaović ◽  
Snježana Rimac-Drlje ◽  
Drago Žagar

A standard called MPEG Dynamic Adaptive Streaming over HTTP (MPEG DASH) ensures the interoperability between different streaming services and the highest possible video quality in changing network conditions. The solutions described in the available literature that focus on video segmentation are mostly proprietary, use a high amount of computational power, lack the methodology, model notation, information needed for reproduction, or do not consider the spatial and temporal activity of video sequences. This paper presents a new model for selecting optimal parameters and number of representations for video encoding and segmentation, based on a measure of the spatial and temporal activity of the video content. The model was developed for the H.264 encoder, using Structural Similarity Index Measure (SSIM) objective metrics as well as Spatial Information (SI) and Temporal Information (TI) as measures of video spatial and temporal activity. The methodology that we used to develop the mathematical model is also presented in detail so that it can be applied to adapt the mathematical model to another type of an encoder or a set of encoding parameters. The efficiency of the segmentation made by the proposed model was tested using the Basic Adaptation algorithm (BAA) and Segment Aware Rate Adaptation (SARA) algorithm as well as two different network scenarios. In comparison to the segmentation available in the relevant literature, the segmentation based on the proposed model obtains better SSIM values in 92% of cases and subjective testing showed that it achieves better results in 83.3% of cases.


Author(s):  
Gaurav Chaurasia ◽  
Arthur Nieuwoudt ◽  
Alexandru-Eugen Ichim ◽  
Richard Szeliski ◽  
Alexander Sorkine-Hornung

We present an end-to-end system for real-time environment capture, 3D reconstruction, and stereoscopic view synthesis on a mobile VR headset. Our solution allows the user to use the cameras on their VR headset as their eyes to see and interact with the real world while still wearing their headset, a feature often referred to as Passthrough. The central challenge when building such a system is the choice and implementation of algorithms under the strict compute, power, and performance constraints imposed by the target user experience and mobile platform. A key contribution of this paper is a complete description of a corresponding system that performs temporally stable passthrough rendering at 72 Hz with only 200 mW power consumption on a mobile Snapdragon 835 platform. Our algorithmic contributions for enabling this performance include the computation of a coarse 3D scene proxy on the embedded video encoding hardware, followed by a depth densification and filtering step, and finally stereoscopic texturing and spatio-temporal up-sampling. We provide a detailed discussion and evaluation of the challenges we encountered, as well as algorithm and performance trade-offs in terms of compute and resulting passthrough quality.;AB@The described system is available to users as the Passthrough+ feature on Oculus Quest. We believe that by publishing the underlying system and methods, we provide valuable insights to the community on how to design and implement real-time environment sensing and rendering on heavily resource constrained hardware.


2019 ◽  
Vol 29 (1) ◽  
pp. 569-591 ◽  
Author(s):  
Matthaios Olma ◽  
Manos Karpathiotakis ◽  
Ioannis Alagiannis ◽  
Manos Athanassoulis ◽  
Anastasia Ailamaki

2021 ◽  
Vol 18 (4) ◽  
pp. 1-27
Author(s):  
Yasir Mahmood Qureshi ◽  
William Andrew Simon ◽  
Marina Zapater ◽  
Katzalin Olcoz ◽  
David Atienza

The increasing adoption of smart systems in our daily life has led to the development of new applications with varying performance and energy constraints, and suitable computing architectures need to be developed for these new applications. In this article, we present gem5-X, a system-level simulation framework, based on gem-5, for architectural exploration of heterogeneous many-core systems. To demonstrate the capabilities of gem5-X, real-time video analytics is used as a case-study. It is composed of two kernels, namely, video encoding and image classification using convolutional neural networks (CNNs). First, we explore through gem5-X the benefits of latest 3D high bandwidth memory (HBM2) in different architectural configurations. Then, using a two-step exploration methodology, we develop a new optimized clustered-heterogeneous architecture with HBM2 in gem5-X for video analytics application. In this proposed clustered-heterogeneous architecture, ARMv8 in-order cluster with in-cache computing engine executes the video encoding kernel, giving 20% performance and 54% energy benefits compared to baseline ARM in-order and Out-of-Order systems, respectively. Furthermore, thanks to gem5-X, we conclude that ARM Out-of-Order clusters with HBM2 are the best choice to run visual recognition using CNNs, as they outperform DDR4-based system by up to 30% both in terms of performance and energy savings.


Sign in / Sign up

Export Citation Format

Share Document