Power, performance and area prediction of 3D ICs during early stage design exploration in 45nm

Author(s):  
Filippos Toufexis ◽  
Antonis Papanikolaou ◽  
Dimitrios Soudris ◽  
George Stamoulis ◽  
Sotiris Bantas
Author(s):  
M. PRATS ◽  
C. EARL ◽  
S. GARNER ◽  
I. JOWERS

Generative specifications have been used to systematically codify established styles in several design fields including architecture and product design. We examine how designers explore new designs in the early stages of product development as they manipulate and interpret shape representations. A model of exploration is proposed with four types of shape descriptions (contour, decomposition, structure, and design) and the results of the exploration are presented. Generative rules are used to provide consistent stylistic changes first within a given decomposition and second through changing the structure. Style expresses both the analytical order of explanation and the synthetic complexity of exploration. The model of exploration is consistent with observations of design practice. The application of generative design methods demonstrates a logical pattern for early stage design exploration. The model provides the basis for tools to assist designers in exploring families of designs in a style and for following new interpretations that move the exploration from one family to another.


2021 ◽  
Vol 1 ◽  
pp. 11-20
Author(s):  
Owen Freeman Gebler ◽  
Mark Goudswaard ◽  
Ben Hicks ◽  
David Jones ◽  
Aydin Nassehi ◽  
...  

AbstractPhysical prototyping during early stage design typically represents an iterative process. Commonly, a single prototype will be used throughout the process, with its form being modified as the design evolves. If the form of the prototype is not captured as each iteration occurs understanding how specific design changes impact upon the satisfaction of requirements is challenging, particularly retrospectively.In this paper two different systems for digitising physical artefacts, structured light scanning (SLS) and photogrammetry (PG), are investigated as means for capturing iterations of physical prototypes. First, a series of test artefacts are presented and procedures for operating each system are developed. Next, artefacts are digitised using both SLS and PG and resulting models are compared against a master model of each artefact. Results indicate that both systems are able to reconstruct the majority of each artefact's geometry within 0.1mm of the master, however, overall SLS demonstrated superior performance, both in terms of completion time and model quality. Additionally, the quality of PG models was far more influenced by the effort and expertise of the user compared to SLS.


Procedia CIRP ◽  
2015 ◽  
Vol 28 ◽  
pp. 125-130 ◽  
Author(s):  
M. Colledani ◽  
L. Bolognese ◽  
D. Ceglarek ◽  
F. Franchini ◽  
C. Marine ◽  
...  

1988 ◽  
Vol 25 (04) ◽  
pp. 239-252
Author(s):  
G. Robed Lamb

Even though in 1987 there were only a dozen SWATH (smali-waterplane-area twin-hull) craft and ships afloat around the world, word of their markedly superior seakeeping performance is spreading rapidly. The number of SWATH vessels is likely to double within five years. As in many other areas of technology, the United States and Japan are the acknowledged leaders in the development and practical application of the SWATH concept. This paper reviews the characteristics of existing SWATH craft and ships from the standpoint of the stated seakeeping objective. Hull form differences between four SWATH craft and ships, including the Navy's SSP Kairnalino, are analyzed and interpreted. Important considerations for the early-stage design of a SWATH ship are discussed. Differences in the range of feasible hull form geometries for coastal areas and unrestricted ocean operations, and for low-speed versus moderately high-speed applications, are pointed out.


2021 ◽  
Author(s):  
Jonathan M. Smyth ◽  
Robert J. Miller

Abstract This paper proposes a new duty-based Smith Chart as part of an improved method of selecting the geometric topology of compressors (axial, mixed or radial) in the earliest stage of design. The method has a number of advantages over previous methods: it is based on the non-dimensional flow and the non-dimensional work, which aligns with the aerodynamic function of the compressor and is therefore more intuitive than specific speed and specific diameter. It is based on a large number of consistently designed compressor rotors which have been computationally predicted using RANS CFD. Most importantly, it provides the designer not only with a choice of topology but also with the complete meridional geometry of the compressor, its blade design and the number of blades. This fidelity of geometry at the very early stage of design allows the designer to undertake a true systems design optimization (noise, manufacturing, packaging constraints and cost). This has the major advantage of significantly reducing early stage design times and costs and allows the designer to explore completely new products more quickly.


Sign in / Sign up

Export Citation Format

Share Document