Research on Coordinated Stability Control of Automobile 4WS and ESP System Based on Road Surface

Author(s):  
Yan-Li Hou ◽  
Ying Yang
Author(s):  
Liangyao Yu ◽  
Changxi You ◽  
Jian Song

With the introduction and development of Anti-lock Braking System in modern vehicles, remarkable progress in brake efficiency and brake stability has been achieved. However, it is a significant challenge to deal with the control law in certain critical situations, especially on split-μ road surface. In low vehicle velocity, as some standards and regulations specified, the stability in such situation is comparably easy to be achieved. But with the vehicle velocity increasing, the driver behavior contributes a large impact on the trajectory maintenance and easily causes sympathetic vibration of the vehicle because of the unexpected synchronization between the driver input and control law output, which could be very dangerous. This paper presents the research work in vehicle stability control when Anti-lock Braking System is activated at split-μ road surface. The principal contribution of this work is that the driver behavior is taken into account and the control law is tuned to adapt to this situation, which effectively maintains the stability of the vehicle without compromising the brake efficiency.


2011 ◽  
Vol 230-232 ◽  
pp. 549-553 ◽  
Author(s):  
Shu Wen Zhou ◽  
Si Qi Zhang ◽  
Guang Yao Zhao

Handling behaviour of articulated vehicles combination is more complex and less predictable than that of non-articulated vehicles. It is usually difficult for drivers to maneuver a tractor semi-trailer during high speed emergency braking on split-mu road surface. Braking on this type of road surface, the conventional anti-lock braking systems will cause the vehicle deviate from the desired direction, or overmuch stopping distance. In this paper, a 3-dof of tractor semi-trailer model was used to produce desired yaw rates which were compared with actual yaw rates. An active front steering control and four-channel ABS were integrated to improve the tractor semi-trailer lateral stability while braking on split-mu road surface, which will produce maximum braking force. A full function tractor semi-trailer model was built and assembled in multi-body dynamics software, and the dynamic analysis was performed on split-mu road surface. The simulation results show that the integrated system can improve the tractor semi-trailer lateral stability under braking on split-mu road surface.


2012 ◽  
Vol 132 (9) ◽  
pp. 1488-1493 ◽  
Author(s):  
Keiji Shibata ◽  
Tatsuya Furukane ◽  
Shohei Kawai ◽  
Yuukou Horita

2016 ◽  
Vol 136 (2) ◽  
pp. 143-156 ◽  
Author(s):  
Katsuhiko Fuwa ◽  
Tatsuo Narikiyo ◽  
Tatsushi Ooba

2017 ◽  
Vol 137 (6) ◽  
pp. 434-445 ◽  
Author(s):  
Hiroshi Yoshida ◽  
Ryuji Tachi ◽  
Koya Takafuji ◽  
Hironori Imaeda ◽  
Masaru Takeishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document