Prediction of heart disease at early stage using data mining and big data analytics: A survey

Author(s):  
N. K. Salma Banu ◽  
Suma Swamy
2019 ◽  
Author(s):  
Meghana Bastwadkar ◽  
Carolyn McGregor ◽  
S Balaji

BACKGROUND This paper presents a systematic literature review of existing remote health monitoring systems with special reference to neonatal intensive care (NICU). Articles on NICU clinical decision support systems (CDSSs) which used cloud computing and big data analytics were surveyed. OBJECTIVE The aim of this study is to review technologies used to provide NICU CDSS. The literature review highlights the gaps within frameworks providing HAaaS paradigm for big data analytics METHODS Literature searches were performed in Google Scholar, IEEE Digital Library, JMIR Medical Informatics, JMIR Human Factors and JMIR mHealth and only English articles published on and after 2015 were included. The overall search strategy was to retrieve articles that included terms that were related to “health analytics” and “as a service” or “internet of things” / ”IoT” and “neonatal intensive care unit” / ”NICU”. Title and abstracts were reviewed to assess relevance. RESULTS In total, 17 full papers met all criteria and were selected for full review. Results showed that in most cases bedside medical devices like pulse oximeters have been used as the sensor device. Results revealed a great diversity in data acquisition techniques used however in most cases the same physiological data (heart rate, respiratory rate, blood pressure, blood oxygen saturation) was acquired. Results obtained have shown that in most cases data analytics involved data mining classification techniques, fuzzy logic-NICU decision support systems (DSS) etc where as big data analytics involving Artemis cloud data analysis have used CRISP-TDM and STDM temporal data mining technique to support clinical research studies. In most scenarios both real-time and retrospective analytics have been performed. Results reveal that most of the research study has been performed within small and medium sized urban hospitals so there is wide scope for research within rural and remote hospitals with NICU set ups. Results have shown creating a HAaaS approach where data acquisition and data analytics are not tightly coupled remains an open research area. Reviewed articles have described architecture and base technologies for neonatal health monitoring with an IoT approach. CONCLUSIONS The current work supports implementation of the expanded Artemis cloud as a commercial offering to healthcare facilities in Canada and worldwide to provide cloud computing services to critical care. However, no work till date has been completed for low resource setting environment within healthcare facilities in India which results in scope for research. It is observed that all the big data analytics frameworks which have been reviewed in this study have tight coupling of components within the framework, so there is a need for a framework with functional decoupling of components.


2021 ◽  
Vol 13 ◽  
pp. 175628722199813
Author(s):  
B. M. Zeeshan Hameed ◽  
Aiswarya V. L. S. Dhavileswarapu ◽  
Nithesh Naik ◽  
Hadis Karimi ◽  
Padmaraj Hegde ◽  
...  

Artificial intelligence (AI) has a proven record of application in the field of medicine and is used in various urological conditions such as oncology, urolithiasis, paediatric urology, urogynaecology, infertility and reconstruction. Data is the driving force of AI and the past decades have undoubtedly witnessed an upsurge in healthcare data. Urology is a specialty that has always been at the forefront of innovation and research and has rapidly embraced technologies to improve patient outcomes and experience. Advancements made in Big Data Analytics raised the expectations about the future of urology. This review aims to investigate the role of big data and its blend with AI for trends and use in urology. We explore the different sources of big data in urology and explicate their current and future applications. A positive trend has been exhibited by the advent and implementation of AI in urology with data available from several databases. The extensive use of big data for the diagnosis and treatment of urological disorders is still in its early stage and under validation. In future however, big data will no doubt play a major role in the management of urological conditions.


2022 ◽  
pp. 1477-1503
Author(s):  
Ali Al Mazari

HIV/AIDS big data analytics evolved as a potential initiative enabling the connection between three major scientific disciplines: (1) the HIV biology emergence and evolution; (2) the clinical and medical complex problems and practices associated with the infections and diseases; and (3) the computational methods for the mining of HIV/AIDS biological, medical, and clinical big data. This chapter provides a review on the computational and data mining perspectives on HIV/AIDS in big data era. The chapter focuses on the research opportunities in this domain, identifies the challenges facing the development of big data analytics in HIV/AIDS domain, and then highlights the future research directions of big data in the healthcare sector.


2021 ◽  
pp. 277-305
Author(s):  
T. Poongodi ◽  
R. Indrakumari ◽  
S. Janarthanan ◽  
P. Suresh

Sign in / Sign up

Export Citation Format

Share Document