Target Detection Method Based on Improved Quadratic Feature Fusion

Author(s):  
Ziqiang Hao ◽  
Zhongyuan Wang ◽  
Meng Liu ◽  
Weida Zhan
2019 ◽  
Vol 16 (2) ◽  
pp. 172988141982965 ◽  
Author(s):  
Kelong Wang ◽  
Wei Zhou

In this article, a unified joint detection framework for pedestrian and cyclist is established to realize the joint detection of pedestrian and cyclist targets. Based on the target detection of fast regional convolution neural network, a deep neural network model suitable for pedestrian and cyclist detection is established. Experiments for poor detection results for small-sized targets and complex and changeable background environment; various network improvement schemes such as difficult case extraction, multilayer feature fusion, and multitarget candidate region input were designed to improve detection and to solve the problems of frequent false detections and missed detections in pedestrian and cyclist target detection. Results of experimental verification of the pedestrian and cyclist database established in Beijing’s urban traffic environment showed that the proposed joint detection method for pedestrians and cyclists can realize the stable tracking of joint detection and clearly distinguish different target categories. Therefore, an important basis for the behavior decision of intelligent vehicles is provided.


2021 ◽  
Vol 1873 (1) ◽  
pp. 012020
Author(s):  
Xiaofeng Zhao ◽  
Yebin Xu ◽  
Fei Wu ◽  
Wei Cai ◽  
Zhili Zhang

2021 ◽  
Vol 13 (4) ◽  
pp. 812
Author(s):  
Jiahuan Zhang ◽  
Hongjun Song

Target detection on the sea-surface has always been a high-profile problem, and the detection of weak targets is one of the most difficult problems and the key issue under this problem. Traditional techniques, such as imaging, cannot effectively detect these types of targets, so researchers choose to start by mining the characteristics of the received echoes and other aspects for target detection. This paper proposes a false alarm rate (FAR) controllable deep forest model based on six-dimensional feature space for efficient and accurate detection of weak targets on the sea-surface. This is the first attempt at the deep forest model in this field. The validity of the model was verified on IPIX data, and the detection probability was compared with other proposed methods. Under the same FAR condition, the average detection accuracy rate of the proposed method could reach over 99.19%, which is 9.96% better than the results of the current most advanced method (K-NN FAR-controlled Detector). Experimental results show that multi-feature fusion and the use of a suitable detection framework have a positive effect on the detection of weak targets on the sea-surface.


Sign in / Sign up

Export Citation Format

Share Document