Wavelet analysis-application of PCA-SVM in state identification method of marine centrifugal pump

Author(s):  
Xu Youlin ◽  
Xiong Ling ◽  
Yao Zhigang ◽  
Guo Jingjia
ICCTP 2011 ◽  
2011 ◽  
Author(s):  
Xing-jian Zhang ◽  
Xiao-hua Zhao ◽  
Jian Rong ◽  
Shi-li Xu

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiaoming Xue ◽  
Nan Zhang ◽  
Suqun Cao ◽  
Wei Jiang ◽  
Jianzhong Zhou ◽  
...  

Fault identification under variable operating conditions is a task of great importance and challenge for equipment health management. However, when dealing with this kind of issue, traditional fault diagnosis methods based on the assumption of the distribution coherence of the training and testing set are no longer applicable. In this paper, a novel state identification method integrated by time-frequency decomposition, multi-information entropies, and joint distribution adaptation is proposed for rolling element bearings. At first, fast ensemble empirical mode decomposition was employed to decompose the vibration signals into a collection of intrinsic mode functions, aiming at obtaining the multiscale description of the original signals. Then, hybrid entropy features that can characterize the dynamic and complexity of time series in the local space, global space, and frequency domain were extracted from each intrinsic mode function. As for the training and testing set under different load conditions, all data was mapped into a reproducing space by joint distribution adaptation to reduce the distribution discrepancies between datasets, where the pseudolabels of the testing set and the final diagnostic results were obtained by the k-nearest neighbor algorithm. Finally, five cases with the training and testing set under variable load conditions were used to demonstrate the performance of the proposed method, and comparisons with some other diagnosis models combined with the same features and other dimensionality reduction methods were also discussed. The analysis results show that the proposed method can effectively recognize the multifaults of rolling element bearings under variable load conditions with higher accuracies and has sound practicability.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3066 ◽  
Author(s):  
Jiaxing Lu ◽  
Xiaobing Liu ◽  
Yongzhong Zeng ◽  
Baoshan Zhu ◽  
Bo Hu ◽  
...  

A combined numerical and experimental method study was performed to detect the inner flow state for a type of centrifugal pump. It was found that the inlet attack angles of blades in an impeller have a great influence on the flow instabilities in a centrifugal pump. The mechanism of the rotating stall in the impeller channel was explained. Meanwhile, flow state identification with vibration (FSIV) was proposed to detect the flow instabilities in a centrifugal pump. The relationship between the external vibration and the inner flow state has been established by FSIV. The characteristics and mechanism of the vibration produced by the flow instabilities in a centrifugal pump were investigated. It was found that the hump, the rotating stall, the backflow, the occurrence of unstable flow, and the cavitation in the centrifugal pump can be effectively detected by applying the vibration signals, which helps to obtain safe and steady operating conditions for the system.


Sign in / Sign up

Export Citation Format

Share Document